RESUMO
The aim of this review is to summarize the progress made in the determination of the protonation constants of biologically active ligands: endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solutions using different experimental techniques. The knowledge of the protonation constants of the aforementioned ligands is crucial for the determination of the equilibrium constants of complex formation and thus for the understanding of complex biological reactions such as transamination, racemization, and decarboxylation. Thus, the protonation constants of ligands are a measure of their ability to form complexes with metal ions. This knowledge not only helps to understand fundamental biochemical processes, but also has practical applications in areas such as drug design, where ligands are often targeted for therapeutic purposes. The activity of the ligands tends to increase after complexation and their order is consistent with the values of the stepwise dissociation constants of the complexes formed. Understanding the properties of ligands by determining their protonation constants in different environments and their interactions with surrounding molecules is crucial to unraveling the complexity of biological systems.
Assuntos
Aminoácidos , Prótons , Água , Aminoácidos/química , Aminoácidos/metabolismo , Água/química , Soluções , LigantesRESUMO
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
RESUMO
The development of the nigrostriatal dopaminergic (DA) pathway in the brain involves many transcriptional and chemotactic molecules, and a deficiency of these molecules can cause nigrostriatal tract defects. However, the role of the end product, dopamine, in nigrostriatal pathway development has not been described. In the present study, we analyzed a mouse model of congenital dopamine and serotonin deficiency, namely, the aromatic l-amino acid decarboxylase (AADC) deficiency (DdcKI) mouse model. We found via tyrosine hydroxylase (TH) immunofluorescence staining that the number of DA fibers in the stratum of 14-day-old DdcKI mice decreased. In TH-stained cleared whole brains of DdcKI mice, the numbers of DA neurons in the substantia nigra (SN) and the number of DA nerve bundles leaving the SN were both normal. However, we found that the nigrostriatal bundles in DdcKI mice were dispersed, taking aberrant routes to the striatum and spreading over a wide area. The total volume occupied by the nigrostriatal tract was increased, and the fraction of TH staining in the tract was decreased in DdcKI mice. Single-nucleus RNA sequencing analysis for mice 0, 7, and 14 days of age, revealed delayed axonogenesis and synapse formation in the striatum of DdcKI mice. The CellChat program inferred less cell-cell communication between striatal D1/D2 neurons but increased cell-cell communication involving neural precursors in DdcKI mice. Therefore, a congenital deficiency in dopamine affects nigrostriatal axon extension and striatal innervation. These nigrostriatal tract defects may limit the treatment efficacy for patients with TH or AADC deficiency.
RESUMO
Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.
Assuntos
Descarboxilases de Aminoácido-L-Aromático , Autoimunidade , Hipotensão Ortostática , Feminino , Humanos , Pessoa de Meia-Idade , Descarboxilases de Aminoácido-L-Aromático/deficiência , Autoanticorpos/sangue , Autoanticorpos/imunologia , Catecolaminas , Dopamina/metabolismo , Hipotensão Ortostática/etiologia , Hipotensão Ortostática/fisiopatologia , Serotonina/metabolismoRESUMO
Successful implementation of enzymes in practical application hinges on the development of efficient mass production techniques. However, in a heterologous expression system, the protein is often unable to fold correctly and, thus, forms inclusion bodies, resulting in the loss of its original activity. In this study, we present a new and more accurate model for predicting amino acids associated with an increased L-amino acid oxidase (LAO) solubility. Expressing LAO from Rhizoctonia solani in Escherichia coli and combining random mutagenesis and statistical logistic regression, we modified 108 amino acid residues by substituting hydrophobic amino acids with serine and hydrophilic amino acids with alanine. Our results indicated that specific mutations in Euclidean distance, glycine, methionine, and secondary structure increased LAO expression. Furthermore, repeated mutations were performed for LAO based on logistic regression models. The mutated LAO displayed a significantly increased solubility, with the 6-point and 58-point mutants showing a 2.64- and 4.22-fold increase, respectively, compared with WT-LAO. Ultimately, using recombinant LAO in the biotransformation of α-keto acids indicates its great potential as a biocatalyst in industrial production.
Assuntos
Escherichia coli , L-Aminoácido Oxidase , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo , L-Aminoácido Oxidase/genética , L-Aminoácido Oxidase/metabolismo , L-Aminoácido Oxidase/química , Modelos Logísticos , Rhizoctonia/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/químicaRESUMO
BACKGROUND: Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal-recessive neurometabolic disorder caused by variants in dopa decarboxylase (DDC) gene, resulting in a severe combined deficiency of serotonin, dopamine, norepinephrine, and epinephrine. Birth prevalence of AADCD varies by population. In pilot studies, 3-O-methyldopa (3-OMD) was shown to be a reliable biomarker for AADCD in high-throughput newborn screening (NBS) allowing an early diagnosis and access to gene therapy. To evaluate the usefulness of this method for routine NBS, 3-OMD screening results from the largest three German NBS centers were analyzed. METHODS: A prospective, multicenter (n = 3) NBS pilot study evaluated screening for AADCD by quantifying 3-OMD in dried blood spots (DBS) using tandem mass spectrometry (MS/MS). RESULTS: In total, 766,660 neonates were screened from January 2021 until June 2023 with 766,647 with unremarkable AADCD NBS (766,443 by 1st-tier analysis and 204 by 2nd-tier analysis) and 13 with positive NBS result recalled for confirmatory diagnostics (recall-rate about 1:59,000). Molecular genetic analysis confirmed AADCD (c.79C > T p.[Arg27Cys] in Exon 2 und c.215 A > C p.[His72Pro] in Exon 3) in one infant. Another individual was highly suspected with AADCD but died before confirmation (overall positive predictive value 0.15). False-positive results were caused by maternal L-Dopa use (n = 2) and prematurity (30th and 36th week of gestation, n = 2). However, in 63% (n = 7) the underlying etiology for false positive results remained unexplained. Estimated birth prevalence (95% confidence interval) was 1:766,660 (95% CI 1:775,194; 1:769,231) to 1:383,330 (95% CI 1:384,615; 1:383,142). The identified child remained asymptomatic until last follow up at the age of 9 months. CONCLUSIONS: The proposed screening strategy with 3-OMD detection in DBS is feasible and effective to identify individuals with AADCD. The estimated birth prevalence supports earlier estimations and confirms AADCD as a very rare disorder. Pre-symptomatic identification by NBS allows a disease severity adapted drug support to diminish clinical complications until individuals are old enough for the application of the gene therapy.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/deficiência , Espectrometria de Massas em Tandem , Lactente , Recém-Nascido , Criança , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Prevalência , Estudos Prospectivos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genéticaRESUMO
Chiral amino acids and their deamination products, α-keto acids, have important applications in food, medicine, and fine chemicals. In this study, two l-amino acid deaminase genes from Proteus mirabilis, PM473 of type â and PM471 of type â ¡ were cloned and expressed in Escherichia coli respectively, expected to achieve the chiral separation of amino acids. Extensive substrate preference testing showed that both deaminases had catalytic effects on the d-amino acid component of the D, l-amino acids, and PM473 has a wider catalytic range for amino acids. When D, L-Cys was used as the substrate, all L-Cys components and 75.1 % of D-Cys were converted to mercapto pyruvate, and the remaining D-Cys was a single chiral enantiomer. Molecular docking analysis showed that the interaction between the substrate and the key residues affected the stereoselectivity of enzymes. The compatibility of hydrophobicity between the binding pocket and substrate may be the basic factor that affects the substrate selectivity. This work provides an alternative method for the production of α-keto acids and the resolution of chiral amino acids.
Assuntos
Escherichia coli , Cetoácidos , Simulação de Acoplamento Molecular , Proteus mirabilis , Proteus mirabilis/enzimologia , Proteus mirabilis/genética , Cetoácidos/metabolismo , Cetoácidos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Estereoisomerismo , Especificidade por Substrato , Aminoácidos/genética , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Clonagem MolecularRESUMO
Tumor cells have an increased demand for nutrients to sustain their growth, but how these increased metabolic needs are ensured or how this influences tumor formation and progression remains unclear. To unravel tumor metabolic dependencies, particularly from extracellular metabolites, we have analyzed the role of plasma membrane metabolic transporters in Drosophila brain tumors. Using a well-established neural stem cell-derived tumor model, caused by brat knockdown, we have found that 13 plasma membrane metabolic transporters, including amino acid, carbohydrate and monocarboxylate transporters, are upregulated in tumors and are required for tumor growth. We identified CD98hc and several of the light chains with which it can form heterodimeric amino acid transporters, as crucial players in brat RNAi (brat IR) tumor progression. Knockdown of these components of CD98 heterodimers caused a dramatic reduction in tumor growth. Our data also reveal that the oncogene dMyc is required and sufficient for the upregulation of CD98 transporter subunits in these tumors. Furthermore, tumor-upregulated dmyc and CD98 transporters orchestrate the overactivation of the growth-promoting signaling pathway TOR, forming a core growth regulatory network to support brat IR tumor progression. Our findings highlight the important link between oncogenes, metabolism, and signaling pathways in the regulation of tumor growth and allow for a better understanding of the mechanisms necessary for tumor progression.
Assuntos
Neoplasias Encefálicas , Proteínas de Drosophila , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulação para Cima , Proteína-1 Reguladora de Fusão/metabolismoRESUMO
Parkinson's disease (PD) is a chronic neurological disorder that is identified by a characteristic combination of symptoms such as bradykinesia, resting tremor, rigidity, and postural instability. It is the second most common neurodegenerative disease after Alzheimer's disease and is characterized by the progressive loss of dopamine-producing neurons in the brain. Currently, available treatments for PD are symptomatic and do not prevent the disease pathology. There is growing interest in developing disease-modifying therapy that can reduce disease progression and improve patients' quality of life. One of the promising therapeutic approaches under evaluation is gene therapy utilizing a viral vector, adeno-associated virus (AAV), to deliver transgene of interest into the central nervous system (CNS). Preclinical studies in small animals and nonhuman primates model of PD have shown promising results utilizing the gene therapy that express glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), aromatic L-amino acid decarboxylase (AADC), and glutamic acid decarboxylase (GAD). This study provides a comprehensive review of the current state of the above-mentioned gene therapies in various phases of clinical trials for PD treatment. We have highlighted the rationale for the gene-therapy approach and the findings from the preclinical and nonhuman primates studies, evaluating the therapeutic effect, dose safety, and tolerability. The challenges associated with gene therapy for heterogeneous neurodegenerative diseases, such as PD, have also been described. In conclusion, the review identifies the ongoing promising gene therapy approaches in clinical trials and provides hope for patients with PD.
Assuntos
Terapia Genética , Doença de Parkinson , Humanos , Terapia Genética/métodos , Doença de Parkinson/terapia , Doença de Parkinson/genética , Animais , Ensaios Clínicos como Assunto/métodosRESUMO
Rosmarinic acid is a natural hydroxycinnamic acid ester used widely in the food and pharmaceutical industries. Although many attempts have been made to screen rate-limiting enzymes and optimize modules through co-culture fermentation, the titer of rosmarinic acid remains at the microgram level by microorganisms. A de novo biosynthetic pathway for rosmarinic acid was constructed based on caffeic acid synthesis modules in Escherichia coli. Knockout of competing pathways increased the titer of rosmarinic acid and reduced the synthesis of rosmarinic acid analogues. An L-amino acid deaminase was introduced to balance metabolic flux between the synthesis of caffeic acid and salvianic acid A. The ratio of FADH2/FAD was maintained via the coordination of deaminase and HpaBC, which is responsible for caffeic acid synthesis. Knockout of menI, encoding an endogenous thioesterase, increased the stability of caffeoyl-CoA. The final strain produced 5780.6 mg/L rosmarinic acid in fed-batch fermentation, the highest yet reported for microbial production. The strategies applied in this study lay a foundation for the synthesis of other caffeic acid and rosmarinic acid derivatives.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica , Vias Biossintéticas , Ácido RosmarínicoRESUMO
BACKGROUND: Aromatic L-amino-acid decarboxylase (AADC) deficiency diagnosis is often delayed by low disease awareness and specific laboratory examinations. We demonstrated that an elevated concentration of L-dopa metabolite 3-O-methyldopa (3-OMD) in dried blood spots could be integrated into a newborn screening program to detect AADC deficiency. METHODS: DBS samples for amino acid and acylcarnitine analysis using NeoBase™2 reagents were also analyzed for the 3-OMD concentration using 13C6-phenylalanine as an internal standard. For samples exceeding the pre-defined cutoffs, an additional spot was punched from the original filter paper for second-tier 3-OMD measurement by high performance liquid chromatography (HPLC)-MS/MS assay. Newborns with a 3-OMD concentration exceeding 500 ng/mL were referred for confirmatory testing. RESULTS: From Feb. 2020 to Dec. 2022, 157,371 newborns were screened for AADC deficiency. Eight newborns exhibited an elevated 3-OMD concentration (839-5170 ng/mL). Among them, six newborns were confirmed to carry two pathogenic DDC variants, indicating an incidence of AADC deficiency of â¼1:26,000 (95% confidence interval: 1 in 12,021 to 1 in 57,228). During the follow-up period, all six patients developed typical symptoms of AADC deficiency. CONCLUSION: The screening for 3-OMD, a target for AADC deficiency, could be easily integrated into the existing newborn screening programs and facilitate the future application for early diagnosis and effective treatment.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Humanos , Recém-Nascido , Estudos Prospectivos , Tirosina , Descarboxilases de Aminoácido-L-Aromático , Erros Inatos do Metabolismo dos Aminoácidos/diagnósticoRESUMO
In this study, a low-molecular-weight organogelator derived from (l)-amino acids was designed and synthesized. Gelation assays using (l)-amino acid derivatives were performed to confirm the gelation ability, which was found to be high in several compounds. The (l)-alanine derivatives were determined to be excellent gelators, forming good gels even when smaller amounts were added. These results led to a library of amino acid-derived organogelators. In addition, the thermal properties of the (l)-alanine derivatives with high gelation performance were measured. Differential scanning calorimetry measurements revealed that the thermal stability of the gels could be controlled by changing the gelator concentration. The surface states of the obtained gels were observed by field-emission scanning electron microscopy and atomic force microscopy measurements, which confirmed the structure of the self-molecular aggregates. Self-molecular aggregates were observed to be helical or sheet-like, and the gels were constructed by forming aggregates by self-molecular recognition.
RESUMO
The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.
RESUMO
The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.
RESUMO
Based on the natural product terpestacin, seventeen derivatives (1-17) with various l-amino acid side chains were designed and synthesized. Their anticancer activities against U87MG-derived glioblastoma stem cells (GSCs) were evaluated, and compounds 5, 11, 13 and 15 showed strong abilities to inhibit the proliferation (IC50 = 2.8-6.9 µM) and tumorsphere formation of GSCs. Besides, compounds 13 and 15 could effectively induce apoptosis and significantly inhibit the invasion of GSCs (95 and 97 % inhibition, respectively, at 2.5 µM). The levels of CD133 marker in GSCs also decreased in dose-dependent manners after the treatment of these active compounds. Compared to terpestacin and the positive control A1938, our derivatives showed stronger activities and compounds 13 and 15 are promising candidates for further development as anticancer agents by targeting GSCs.
Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Aminoácidos/farmacologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Efficient FAD/FADH2 regeneration is vital for enzymatic biocatalysis and metabolic pathway optimization. Here, we constructed an efficient and simple FAD/FADH2 regeneration system through a combination of L-amino acid deaminase (L-AAD) and halogenase (CombiAADHa), which was applied for catalyzing the conversion of an L-amino acid to halide and an α-keto acid. For cell-free biotransformation, the optimal activity ratio of L-AAD and halogenase was set between 1:50 and 1:60. Within 6 h, 170 mg/L of 7-chloro-tryptophan (7-Cl-Trp) and 193 mg/L of indole pyruvic acid (IPA) were synthesized in the selected mono-amino acid system. For whole-cell biotransformation, 7-Cl-Trp and IPA synthesis was enhanced by 15% (from 96 to 110 mg/L) and 12% (from 115 to 129 mg/L), respectively, through expression fine-tuning and the strengthening of FAD/FADH2 supply. Finally, ultrasound treatment was applied to improve membrane permeability and adjust the activity ratio, resulting in 1.6-and 1.4-fold higher 7-Cl-Trp and IPA yields. The products were then purified. This system could also be applied to the synthesis of other halides and α-keto acids. KEY POINTS: ⢠In this study, a whole cell FAD/FADH2 regeneration system co-expressing l-AAD and halogenase was constructed ⢠This study found that the activity and ratio of enzyme and the concentration of cofactors had a significant effect on the catalytic process for the efficient co-production of 7-chlorotryptophan and indole pyruvate.
Assuntos
Ácido Pirúvico , Triptofano , Triptofano/metabolismo , Aminoácidos/metabolismo , Indóis/metabolismo , Cetoácidos/metabolismo , RegeneraçãoRESUMO
Aromatic L-amino acid decarboxylase deficiency results in decreased neurotransmitter levels and severe motor dysfunction. Twenty-six patients without head control received bilateral intraputaminal infusions of a recombinant adeno-associated virus type 2 vector containing the human aromatic L-amino acid decarboxylase gene (eladocagene exuparvovec) and have completed 1-year evaluations. Rapid improvements in motor and cognitive function occurred within 12 months after gene therapy and were sustained during follow-up for >5 years. An increase in dopamine production was demonstrated by positron emission tomography and neurotransmitter analysis. Patient symptoms (mood, sweating, temperature, and oculogyric crises), patient growth, and patient caretaker quality of life improved. Although improvements were observed in all treated participants, younger age was associated with greater improvement. There were no treatment-associated brain injuries, and most adverse events were related to underlying disease. Post-surgery complications such as cerebrospinal fluid leakage were managed with standard of care. Most patients experienced mild to moderate dyskinesia that resolved in a few months. These observations suggest that eladocagene exuparvovec treatment for aromatic L-amino acid decarboxylase deficiency provides durable and meaningful benefits with a favorable safety profile.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Qualidade de Vida , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/líquido cefalorraquidiano , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Dopamina , Terapia Genética/efeitos adversos , HumanosRESUMO
Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: ⢠Two biosynthesis pathways of serotonin are introduced. ⢠L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. ⢠Effective strategies are proposed to improve serotonin production.
Assuntos
Serotonina , Triptofano Hidroxilase , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano/metabolismo , Hidroxilação , NeurotransmissoresRESUMO
Imidazole dipeptides, histidine-containing dipeptides, including carnosine (ß-alanyl-l-histidine), anserine (ß-alanyl-3-methyl-l-histidine), and balenine (ß-alanyl-1-methyl-l-histidine) in animal muscles have physiological functions, such as significant antioxidant and antifatigue effects. They are obtained by extraction from natural raw materials, including chicken and fish meat. However, using natural raw materials entails stable supply and mass production limitations. l-amino acid α-ligase (Lal) catalyzes the formation of various dipeptides from unprotected l-amino acids by conjugating with adenosine 5'-triphosphate (ATP) hydrolysis reaction. In this study, site-directed mutagenesis of Lal was applied to establish an efficient method for producing imidazole dipeptides by the enzymatic process. We significantly improved the conversion rate from substrate amino acids compared with wild-type Lal.
Assuntos
Aminoácidos , Carnosina , Animais , Aminoácidos/metabolismo , Ligases/metabolismo , Histidina/genética , Dipeptídeos/metabolismo , Carnosina/química , Anserina/metabolismo , Mutagênese Sítio-Dirigida , ImidazóisRESUMO
The mammalian striatum is known to contain non-dopaminergic neurons that express dopamine (DA)-synthesizing enzymes and produce DA, responsible for the regulation of motor function. This study assessed the expression of DA-synthesizing enzymes in striatal neurons and their role in DA synthesis in transgenic mice expressing the green fluorescent protein (GFP) gene under the tyrosine hydroxylase (TH) gene promoter in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). We showed that, in Parkinsonian animals, the number of neurons expressing the TH gene increased by 1.9 times compared with the control (0.9% NaCl), which indicates a compensatory response to the DAergic denervation of the striatum. This assumption is supported by a 2.5-fold increase in the expression of genes for TH and transcription factor Nurr1 and a 1.45-fold increase in the expression of the large amino acid transporter 1 gene. It is noteworthy that, in Parkinsonian mice, in contrast to the controls, DA-synthesizing enzymes were found not only in nerve fibers but also in neuronal cell bodies. Indeed, TH or TH and aromatic L-amino acid decarboxylase (AADC) were detected in GFP-positive neurons, and AADC was detected in GFP-negative neurons. These neurons were shown to synthesize DA, and this synthesis is compensatorily increased in Parkinsonian mice. The above data open the prospect of improving the treatment of PD by maintaining DA homeostasis in the striatum.