Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 178(2): 473-490.e26, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230715

RESUMO

We introduce APEX-seq, a method for RNA sequencing based on direct proximity labeling of RNA using the peroxidase enzyme APEX2. APEX-seq in nine distinct subcellular locales produced a nanometer-resolution spatial map of the human transcriptome as a resource, revealing extensive patterns of localization for diverse RNA classes and transcript isoforms. We uncover a radial organization of the nuclear transcriptome, which is gated at the inner surface of the nuclear pore for cytoplasmic export of processed transcripts. We identify two distinct pathways of messenger RNA localization to mitochondria, each associated with specific sets of transcripts for building complementary macromolecular machines within the organelle. APEX-seq should be widely applicable to many systems, enabling comprehensive investigations of the spatial transcriptome.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Corantes Fluorescentes/química , Células HEK293 , Humanos , Microscopia de Fluorescência , Mitocôndrias/genética , RNA/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Transcriptoma
2.
Cell ; 169(5): 780-791, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525751

RESUMO

In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation.


Assuntos
Núcleo Celular/química , Cromatina/química , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Heterocromatina , Humanos , Laminas/metabolismo , Lâmina Nuclear/química , Poro Nuclear/metabolismo
3.
Genes Dev ; 34(7-8): 560-579, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139421

RESUMO

Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/genética , Deleção de Genes , Distrofia Muscular de Emery-Dreifuss/genética , Animais , Sítios de Ligação/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/patologia , Cromatina/genética , Modelos Animais de Doenças , Genoma Helmíntico/genética , Laminina/genética , Laminina/metabolismo , Músculos/fisiopatologia , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Mutação , Estrutura Terciária de Proteína/genética , Sarcômeros/química , Sarcômeros/genética , Transcrição Gênica/genética
4.
Mol Cell ; 71(5): 802-815.e7, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30201095

RESUMO

Lamins are structural components of the nuclear lamina (NL) that regulate genome organization and gene expression, but the mechanism remains unclear. Using Hi-C, we show that lamins maintain proper interactions among the topologically associated chromatin domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that lamin loss causes expansion or detachment of specific LADs in mouse ESCs. The detached LADs disrupt 3D interactions of both LADs and interior chromatin. 4C and epigenome analyses further demonstrate that lamins maintain the active and repressive chromatin domains among different TADs. By combining these studies with transcriptome analyses, we found a significant correlation between transcription changes and the interaction changes of active and inactive chromatin domains These findings provide a foundation to further study how the nuclear periphery impacts genome organization and transcription in development and NL-associated diseases.


Assuntos
Núcleo Celular/genética , Genoma/genética , Laminas/genética , Lâmina Nuclear/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Epigenômica/métodos , Expressão Gênica/genética , Hibridização in Situ Fluorescente/métodos , Camundongos
5.
Trends Genet ; 36(6): 385-387, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396830

RESUMO

Lu et al. report that the association of different repeat types with distinct gene classes goes far beyond what has previously been shown and suggest that such relationship might be essential for gene function and regulation. As an example, they describe how long interspersed nuclear repeat (LINE1) transcripts are recruited together with associated genes to silent nuclear regions.


Assuntos
Sequências Repetitivas de Ácido Nucleico
6.
Chromosome Res ; 30(1): 123-136, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239049

RESUMO

More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.


Assuntos
Cromatina , Lâmina Nuclear , Animais , Cromatina/genética , Cromatina/metabolismo , Genoma , Genômica , Heterocromatina/metabolismo , Mamíferos/genética , Lâmina Nuclear/química , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
7.
Biochem Soc Trans ; 50(2): 1035-1044, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35437578

RESUMO

Lamins are components of the nuclear lamina, a protein meshwork that underlies the nuclear membrane. Lamins interact with chromatin in transcriptionally silent regions defined as lamina-associated-domains (LADs). However, recent studies have shown that lamins regulate active transcription inside LADs. In addition, ChIP-seq analysis has shown that lamins interact with lamin-dependent promoters and enhancers located in the interior of the nucleus. Moreover, functional studies suggest that lamins regulate transcription at associated-promoters and long-range chromatin interactions of key developmental gene programs. This review will discuss emerging, non-canonical functions of lamins in controlling non-silent genes located both inside and outside of LADs, focusing on transcriptional regulation and chromatin organization in Drosophila and mammals as metazoan model organisms.


Assuntos
Cromatina , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Laminas/genética , Laminas/metabolismo , Mamíferos/genética , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo
8.
Biochem Biophys Res Commun ; 546: 155-161, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582559

RESUMO

The CRISPR-Cas systems are recently discovered adaptive immune strategies in bacteria and archaea against foreign genetic elements. Although gene-editing enabled by CRISPR-Cas9 has shown great promise for clinical application, little is known about potential mechanisms of CRISPR-Cas systems for regulating their own gene expression and altering the virulence within bacteria. Here, Gram-negative bacterium Pseudomonas aeruginosa PA14 that contains a Type I-F CRISPR-Cas system was used to study the mechanism endogenous CRISPR-Cas of regulation mechanism. We delineated the role of calcium as a positive regulator of the transcription of cas/csy complex and CRISPR-Cas immunity through the two-component system (TCS) protein kinase LadS. Furthermore, we identified a LadS downstream post-transcriptional regulator, RsmA, which targeted translation region of cas mRNA via A(N)GGA motif. Importantly, calcium-mediated influencing of CRISPR-Cas system was dependent on LadS and RsmA. Altogether, our findings uncover the previously unrecognized role of LadS/RsmA in modulating Type I-F CRISPR-Cas system via sensing calcium.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/fisiologia , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Eng Life Sci ; 24(4): 2300238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584688

RESUMO

Digitalization with integrated devices, digital and physical assistants, automation, and simulation is setting a new direction for laboratory work. Even with complex research workflows, high staff turnover, and a limited budget some laboratories have already shown that digitalization is indeed possible. However, academic bioprocess laboratories often struggle to follow the trend of digitalization. Due to their diverse research circumstances, high variety of team composition, goals, and limitations the concepts are substantially different. Here, we will provide an overview on different aspects of digitalization and describe how academic laboratories successfully digitalized their working environment. The key aspect is the collaboration and communication between IT-experts and scientific staff. The developed digital infrastructure is only useful if it supports the laboratory worker and does not complicate their work. Thereby, laboratory researchers have to collaborate closely with IT-experts in order for a well-developed and maintainable digitalization concept that fits their individual needs and level of complexity. This review may serve as a starting point or a collection of ideas for the transformation toward a digitalized laboratory.

10.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771052

RESUMO

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Assuntos
Macrófagos , Fagocitose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/imunologia , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Humanos , Células RAW 264.7
11.
FEBS Lett ; 597(22): 2782-2790, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339933

RESUMO

The nuclear envelope plays an essential role in organizing the genome inside of the nucleus. The inner nuclear membrane is coated with a meshwork of filamentous lamin proteins that provide a surface to organize a variety of cellular processes. A subset of nuclear lamina- and membrane-associated proteins functions as anchors to hold transcriptionally silent heterochromatin at the nuclear periphery. While most chromatin tethers are integral membrane proteins, a limited number are lamina-bound. One example is the mammalian proline-rich 14 (PRR14) protein. PRR14 is a recently characterized protein with unique function that is different from other known chromatin tethers. Here, we review our current understanding of PRR14 structure and function in organizing heterochromatin at the nuclear periphery.


Assuntos
Cromatina , Heterocromatina , Animais , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo , Membrana Nuclear , Mamíferos/genética
12.
Front Cell Dev Biol ; 10: 1030950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274847

RESUMO

Cardiomyopathy is a myocardial disorder, in which the heart muscle is structurally and functionally abnormal, often leading to heart failure. Dilated cardiomyopathy is characterized by a compromised left ventricular function and contributes significantly to the heart failure epidemic, which represents a staggering clinical and public health problem worldwide. Gene mutations have been identified in 35% of patients with dilated cardiomyopathy. Pathogenic variants in LMNA, encoding nuclear A-type lamins, are one of the major causative causes of dilated cardiomyopathy (i.e. CardioLaminopathy). A-type lamins are type V intermediate filament proteins, which are the main components of the nuclear lamina. The nuclear lamina is connected to the cytoskeleton on one side, and to the chromatin on the other side. Among the models proposed to explain how CardioLaminopathy arises, the "chromatin model" posits an effect of mutated A-type lamins on the 3D genome organization and thus on the transcription activity of tissue-specific genes. Chromatin contacts with the nuclear lamina via specific genomic regions called lamina-associated domains lamina-associated domains. These LADs play a role in the chromatin organization and gene expression regulation. This review focuses on the identification of LADs and chromatin remodeling in cardiac muscle cells expressing mutated A-type lamins and discusses the methods and relevance of these findings in disease.

13.
Adv Biochem Eng Biotechnol ; 182: 133-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461362

RESUMO

The laboratory is a complex working environment, laboratory stuff need to manage and coordinate a multitude of processes, equipment, materials, samples, and people. Without agreements and definitions, long-term operation is economically inconceivable. Working with external partners and their systems would also not be possible without definitions. For this reason, there are a number of norms/standards that support everyday work in the laboratory. It is important to understand the difference between a norm and a standard. What are the reasons for developing a standard or using a standard? However, there are also a number of points to consider when using a standard. In the remainder of this section, the most widely used norms and standards are briefly described and, where possible, compared to each other. Nevertheless, there is still a need for further standardization at the laboratory IT infrastructure level, so that laboratories can continue to manage increasing complexity in the future.


Assuntos
Laboratórios , Humanos , Padrões de Referência
14.
Adv Biochem Eng Biotechnol ; 182: 175-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35861885

RESUMO

In a similar vein to Industry 4.0 in manufacturing industries, digitisation is making inroads in the laboratory industry in the form of Laboratory 4.0, or networked laboratories. Companies can gain decisive competitive edges by automating their work processes and systems and networking them with each other and primary IT systems. A uniform communication standard such as OPC UA, a well-established global standard in the aforementioned manufacturing industries, is essential to a modular, scalable network of heterogeneous laboratory structures. Can the laboratory industry benefit from this standard and the years of development experience? In SPECTARIS, the German Industry Association for Optics, Photonics, Analytical and Medical Technologies, over 30 global market leaders, hidden champions and drivers of innovation in the laboratory industry put their heads together in the "Networked Laboratory Devices" working group and created the "Laboratory and Analytical Device Standard", or LADS for short. Unlike numerous other attempts to establish communication standards for laboratories, LADS is based on the advanced OPC UA standard and takes an agnostic approach to cover the variety of devices, systems and requirements in laboratories. In this context, "agnostic" refers to the generic design and display of potentially as-yet-unknown aspects of the flow of information or communication structures. For the first time, LADS allows for modular, scalable networking of heterogeneous laboratory structures, efficient data transfers and - currently unused - user, process and device-based data analysis (keywords: big data, predictive analytics, data science) - even taking normative requirements into consideration. This agnostic modelling makes LADS a future-proof communication solution for the laboratory industry, the likes of which the world has never seen.


Assuntos
Indústrias , Laboratórios , Comunicação
15.
Cell Stem Cell ; 29(1): 116-130.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995493

RESUMO

Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
16.
Methods Mol Biol ; 2214: 265-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32944916

RESUMO

Investigating the chromatin landscape of the early mammalian embryo is essential to understand how epigenetic mechanisms may direct reprogramming and cell fate allocation. Genome-wide analyses of the epigenome in preimplantation mouse embryos have recently become available, thanks to the development of low-input protocols. DNA adenine methyltransferase identification (DamID) enables the investigation of genome-wide protein-DNA interactions without the requirement of specific antibodies. Most importantly, DamID can be robustly applied to single cells. Here we describe the protocol for performing DamID in single oocytes and mouse preimplantation embryos, as well as single blastomeres, using a Dam-LaminB1 fusion to generate high-resolution lamina-associated domain (LAD) maps. This low-input method can be adapted for other proteins of interest to faithfully profile their genomic interaction, allowing us to interrogate the chromatin dynamics and nuclear organization during the early mammalian development.


Assuntos
Blastocisto/metabolismo , Genômica/métodos , Camundongos/embriologia , Camundongos/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Blastocisto/citologia , Células Cultivadas , Técnicas de Cultura Embrionária/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Análise de Célula Única/métodos
17.
J Genet Genomics ; 48(3): 184-197, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33840602

RESUMO

In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.


Assuntos
Epigenômica , Lâmina Nuclear , Núcleo Celular , Regulação da Expressão Gênica , Heterocromatina , Humanos
18.
Front Cell Dev Biol ; 9: 761469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722546

RESUMO

A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.

19.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194518, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113985

RESUMO

In the nucleus, chromosomes are hierarchically folded into active (A) and inactive (B) compartments composed of topologically associating domains (TADs). Genomic regions interact with nuclear lamina, termed lamina-associated domains (LADs). However, the molecular mechanisms underlying these 3D chromatin architectures remain incompletely understood. Here, we investigated the role of a potential tumor suppressor, TOP1 Binding Arginine/Serine Rich Protein (TOPORS), in genome organization. In mouse hepatocytes, chromatin interactions between A and B compartments increase and compartmentalization strength is reduced significantly upon Topors knockdown. Correspondingly, strength of TAD boundaries located at A/B borders is weakened. In the absence of TOPORS, chromatin-lamina interactions decrease and the coverage of LADs reduces from 53.31% to 46.52%. Interestingly, these changes in 3D genome are associated with PML nuclear bodies and PML-associated domains (PADs). Moreover, chromatin accessibility is altered predominantly at intergenic regions upon Topors knockdown, including a subset of enhancers. These alterations of chromatin are concordant with transcriptome changes, which are associated with carcinogenesis. Collectively, our findings demonstrate that TOPORS functions as a regulator in chromatin structure, providing novel insight into the architectural roles of tumor suppressors in higher-order genome organization.


Assuntos
Cromatina/química , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Camundongos , Lâmina Nuclear/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Transcriptoma , Ubiquitina-Proteína Ligases/genética
20.
Genome Med ; 12(1): 46, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450911

RESUMO

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes. METHODS: Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS. To do so, we studied chromatin accessibility (Assay for Transposase-accessible Chromatin (ATAC)-see/-seq), DNA methylation profiles (Infinium MethylationEPIC BeadChips), and transcriptomes (RNA-seq) of nine primary HGPS fibroblast cell lines and six additional controls, two parental and four age-matched healthy fibroblast cell lines. RESULTS: Our ATAC-see/-seq data demonstrate that primary dermal fibroblasts from HGPS patients exhibit chromatin accessibility changes that are enriched in LADs. Infinium MethylationEPIC BeadChip profiling further reveals that DNA methylation alterations observed in HGPS fibroblasts are similarly enriched in LADs and different from those occurring during healthy aging and Werner syndrome (WS), another premature aging disease. Moreover, HGPS patients can be stratified into two different subgroups according to their DNA methylation profiles. Finally, we show that the epigenetic deregulation of LADs is associated with HGPS-specific gene expression changes. CONCLUSIONS: Taken together, our results strongly implicate epigenetic deregulation of LADs as an important and previously unrecognized feature of HGPS, which contributes to disease-specific gene expression. Therefore, they not only add a new layer to the study of epigenetic changes in the progeroid syndrome, but also advance our understanding of the disease's pathology at the cellular level.


Assuntos
Lamina Tipo A/genética , Progéria/genética , Linhagem Celular , Metilação de DNA , Epigênese Genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA