Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35574660

RESUMO

Segmental duplications (SDs) constitute a considerable fraction of primate genomes. They contribute to genetic variation and provide raw material for evolution. Groups of SDs are characterized by the presence of shared core duplicons. One of these core duplicons, low copy repeat (lcr)16a, has been shown to be particularly active in the propagation of interspersed SDs in primates. The underlying mechanisms are, however, only partially understood. Alu short interspersed elements (SINEs) are frequently found at breakpoints and have been implicated in the expansion of SDs. Detailed analysis of lcr16a-containing SDs shows that the hominid-specific SVA (SINE-R-VNTR-Alu) retrotransposon is an integral component of the core duplicon in Asian and African great apes. In orang-utan, it provides breakpoints and contributes to both interchromosomal and intrachromosomal lcr16a mobility by inter-element recombination. Furthermore, the data suggest that in hominines (human, chimpanzee, gorilla) SVA recombination-mediated integration of a circular intermediate is the founding event of a lineage-specific lcr16a expansion. One of the hominine lcr16a copies displays large flanking direct repeats, a structural feature shared by other SDs in the human genome. Taken together, the results obtained extend the range of SVAs' contribution to genome evolution from RNA-mediated transduction to DNA-based recombination. In addition, they provide further support for a role of circular intermediates in SD mobilization.


Assuntos
Hominidae , Duplicações Segmentares Genômicas , Animais , Evolução Molecular , Genoma Humano , Hominidae/genética , Humanos , Primatas/genética , Retroelementos
2.
Genome Biol ; 21(1): 202, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778141

RESUMO

BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human-ape gene families, nuclear pore interacting protein (NPIP). RESULTS: Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS: LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution.


Assuntos
Evolução Molecular , Duplicação Gênica , Primatas/genética , Duplicações Segmentares Genômicas , Animais , Biodiversidade , Encéfalo , Mapeamento Cromossômico , Cromossomos , Éxons , Fusão Gênica , Genoma Humano , Instabilidade Genômica , Hominidae , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA