Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 14(1): 13109, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849385

RESUMO

A rapid and effective strategy has been devised for the swift development of a Zn(II)-ion-based supramolecular metallohydrogel, termed Zn@PEH, using pentaethylenehexamine as a low molecular weight gelator. This process occurs in an aqueous medium at room temperature and atmospheric pressure. The mechanical strength of the synthesized Zn@PEH metallohydrogel has been assessed through rheological analysis, considering angular frequency and oscillator stress dependencies. Notably, the Zn@PEH metallohydrogel exhibits exceptional self-healing abilities and can bear substantial loads, which have been characterized through thixotropic analysis. Additionally, this metallohydrogel displays injectable properties. The structural arrangement resembling pebbles within the hierarchical network of the supramolecular Zn@PEH metallohydrogel has been explored using FESEM and TEM measurements. EDX elemental mapping has confirmed the primary chemical constituents of the metallohydrogel. The formation mechanism of the metallohydrogel has been analyzed via FT-IR spectroscopy. Furthermore, zinc(II) metallohydrogel (Zn@PEH)-based Schottky diode structure has been fabricated in a lateral metal-semiconductor-metal configuration and  it's charge transport behavior has also been studied. Notably, the zinc(II) metallohydrogel-based resistive random access memory (RRAM) device (Zn@PEH) demonstrates bipolar resistive switching behavior at room temperature. This RRAM device showcases remarkable switching endurance over 1000 consecutive cycles and a high ON/OFF ratio of approximately 270. Further, 2 × 2 crossbar array of the RRAM devices were designed to demonstrate OR and NOT logic circuit operations, which can be extended for performing higher order computing operations. These structures hold promise for applications in non-volatile memory design, neuromorphic and in-memory computing, flexible electronics, and optoelectronic devices due to their straightforward fabrication process, robust resistive switching behavior, and overall system stability.

2.
Gels ; 8(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547337

RESUMO

The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.

3.
Gels ; 8(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735734

RESUMO

A new family of C2-symmetric pseudopeptides with a high functional density for supramolecular interactions has been synthetized through the attachment of four amino acid subunits to a diamino aliphatic spacer. The resulting open-chain compounds present remarkable properties as low-molecular-weight hydrogelators. The self-assembled 3D networks were characterized by SEM analyses, observing regular nanofibres with 80-100 nm diameters. Spectroscopic and molecular modelling experiments revealed the presence of strong synergic effects between the H-bonding and π-π interactions, with the best results obtained for the homoleptic tetra-pseudopeptide derived from l-Phe. In addition, these bioinspired hydrogels possessed pH- and CO2-responsive sol-gel transitions. The formation of ammonium carbamate derivatives in the presence of carbon dioxide led to a detrimental change in its adequate self-assembly. CO2 desorption temperatures of ca. 70 °C were assigned to the thermodynamically favoured recovery of the supramolecular gel.

4.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012236

RESUMO

Controlling the polymerization of supramolecular self-assembly through external stimuli holds great potential for the development of responsive soft materials and manipulation at the nanoscale. Vinyl esters of bis(leu or val)fumaramide (1a and 2a) have been found to be gelators of various organic solvents and were applied in this investigation of the influence of organogelators' self-assembly on solid-state polymerization induced by gamma and ultraviolet irradiation. Here, we report our investigation into the influences of self-assemblies of bis(amino acid vinyl ester)fumaramides on gamma-ray- and ultraviolet-induced polymerization. The gelator molecules self-assembled by non-covalent interactions, mainly through hydrogen bonds between the amide group (CONH) and the carboxyl group (COO), thus forming a gel network. NMR and FTIR spectroscopy were used to investigate and characterize supramolecular gels. TEM and SEM microscopy were used to investigate the morphology of gels and polymers. Morphology studies showed that the gels contained a filamentous structure of nanometer dimensions that was exhaustive in a three-dimensional network. The prepared derivatives contained reactive alkyl groups suitable for carrying out the polymerization reaction initiated by gamma or ultraviolet radiation in the supramolecular aggregates of selected gels. It was found that the polymerization reaction occurred only in the network of the gel and was dependent on the structure of aggregates or the proximity and orientation of double bonds in the gel network. Polymers were formed by the gels exposure to gamma and ultraviolet radiation in toluene, and water/DMF gels with transcripts of their gel structure into polymers. The polymeric material was able to immobilize various solvents by swelling. Furthermore, methyl esters of bis(leu and val)fumaramide (1b and 2b) were synthesized; these compounds showed no gelling properties, and the crystal structure of the valine derivative 2b was determined.

5.
J Colloid Interface Sci ; 626: 619-628, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810701

RESUMO

Noncovalent interactions are ubiquitous, endowing high feasibility on assembly and disassembly of gel network structure. Loading anticancer drugs in low molecular weight gelator (LMWG)-based gel through a noncovalently co-assembly process shows advantages of high efficacy, thixotropy, and controllable release. Drug-loaded fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-F)/DMSO/H2O-doxorubicin (DOX) gels were fabricated by an effective solvent-triggering method dominated by solvated Fmoc-F with DMSO. Density Functional Theory (DFT) calculation results show that the noncovalent interactions between Fmoc-F and DOX drive the co-assembly of the gel. DOX can assemble with Fmoc-F and realize its co-assembly loading through the H-bonding and π-π stacking, similar to the way that gel networks form. Depending on a network dis-assembly process, sustained release of DOX was achieved along with carrier decomposition through a repetitive diffusion-surface erosion process. DOX loading and release prove the non-covalent interactions and the mechanism for controlling the assembly process. By such tailoring co-assembled loading, the administration of DOX is hoped to be optimized to improve the clinical application.


Assuntos
Antineoplásicos , Dimetil Sulfóxido , Antineoplásicos/química , Doxorrubicina/química , Géis/química , Solventes
6.
J Colloid Interface Sci ; 617: 156-170, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276518

RESUMO

HYPOTHESIS: We have shown earlier that low molecular weight gels based on N-heptyl-d-galactonamide hydrogels can be 3D printed by solvent exchange, but they tend to dissolve in the printing bath. We wanted to explore the printing of less soluble N-alkyl-d-galactonamides with longer alkyl chains. Less soluble hydrogels could be good candidates as cell culture scaffolds. EXPERIMENTS: N-hexyl, N-octyl and N-nonyl-d-galactonamide solutions in dimethylsulfoxide are injected in a bath of water following patterns driven by a 2D drawing robot coupled to a z-platform. Solubilization of the gels with time has been determined and solubility of the gelators has been measured by NMR. Imbricated structures have been built with N-nonyl-d-galactonamide as a persistent ink and N-hexyl or N-heptyl-d-galactonamide as sacrificial inks. Human mesenchymal stem cells have been cultured on N-nonyl-d-galactonamide hydrogels prepared by cooling or by 3D printing. FINDINGS: The conditions for printing well-resolved 3D patterns have been determined for the three gelators. In imbricated structures, the solubilization of N-hexyl or N-heptyl-d-galactonamide occurred after a few hours or days and gave channels. Human mesenchymal stem cells grown on N-nonyl-d-galactonamide hydrogels prepared by heating-cooling, which are stable and have a fibrillar microstructure, developed properly. 3D printed hydrogels, which microstructure is made of micrometric flakes, appeared too fragile to withstand cell growth.


Assuntos
Hidrogéis , Impressão Tridimensional , Técnicas de Cultura de Células , Humanos , Hidrogéis/química , Tinta , Peso Molecular , Engenharia Tecidual , Alicerces Teciduais/química
7.
Gels ; 7(3)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287290

RESUMO

Supramolecular gels form a class of soft materials that has been heavily explored by the chemical community in the past 20 years. While a multitude of experimental techniques has demonstrated its usefulness when characterizing these materials, the potential value of computational techniques has received much less attention. This review aims to provide a complete overview of studies that employ computational tools to obtain a better fundamental understanding of the self-assembly behavior of supramolecular gels or to accelerate their development by means of prediction. As such, we hope to stimulate researchers to consider using computational tools when investigating these intriguing materials. In the concluding remarks, we address future challenges faced by the field and formulate our vision on how computational methods could help overcoming them.

8.
J Colloid Interface Sci ; 603: 333-343, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197983

RESUMO

HYPOTHESIS: Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances. EXPERIMENTS: Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared. They are based on gluconamide, glucoheptonamide, galactonamide, glucamide, aliphatic chains and glycine. Their gelation in water was investigated in thermal conditions and wet spinning conditions, namely by dimethylsulfoxide-water exchange under injection. FINDINGS: Nine molecules give hydrogels in thermal conditions. By wet spinning, six molecules self-assemble fast enough, within few seconds, to form continous hydrogel filaments. Therefore, the method enables to shape by injection these mechanically fragile hydrogels, notably in the perspective of 3D printing. Depending on the molecular structure, persistent or soluble gel filaments are obtained. The microstructures are varied, featuring entangled ribbons, platelets or particles. In thermal gelation, molecules with a symmetrical polar head (galacto, glucoheptono) give flat ribbons and molecules with an asymmetrical polar head (gluco) give helical ribbons. The introduction of an extra glycine linker disturbs this trend.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Carboidratos , Peso Molecular , Impressão Tridimensional
9.
Methods Mol Biol ; 2208: 179-188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32856263

RESUMO

Low-molecular-weight hydrogels (LMWG) can be formed by electrochemical methods. Unique to the electrochemical method, gelation is localized on the electrode surface; therefore, thin hydrogel films can be prepared in seconds while thicker gels can be prepared in minutes. Furthermore, hydrogels are suitable for use in a range of characterization methods. Here, we describe techniques to form hydrogels using cyclic voltammetry and potentiometry.


Assuntos
Técnicas Eletroquímicas/métodos , Hidrogéis/química , Eletrodos , Peso Molecular
10.
J Colloid Interface Sci ; 596: 442-454, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33852984

RESUMO

HYPOTHESIS: Following the observation of a microfibrillar phase in sodium dodecylsulfate (SDS)-glycerol mixtures, it is hypothesized that this phase is a crystalline structure containing SDS and glycerol, where the interaction between sulfate and glycerol layers mediates the co-assembly, which also could be universal for similar systems formed by n-alkyl sulfate homologues. Experiment. n-alkyl sulfate glycerol solutions were studied using a combination of optical microscopy, small- and wide-angle X-ray scattering (SAXS/WAXS). Time-resolved SAXS was employed to determine the phase formation in SDS-glycerol-water mixtures. FINDINGS: The microfibrillar crystalline phase was reproduced in even-chained n-alkyl sulfates with a chain length between 12 and 18 carbon atoms, where the phase lamellar period increased uniformly with the alkyl chain length. Reconstruction of electron density profiles from the diffraction patterns allowed the lamellar structural motif of the phase, the glycerol location and stoichiometry to be determined. When SDS-glycerol-water mixtures with water concentration below 6 wt% are isothermally solidified at 20 °C, SDS-glycerol crystals and/or anhydrous SDS form, where the former is inhibited by the latter at higher water concentrations. The learnings from the SDS-glycerol phase formation allows new gels to be created, utilising the glycerol-sulfate motif generating microfibrils. This expands the knowledge of the applicable formulation space for SDS-water containing mixtures.

11.
ACS Appl Mater Interfaces ; 10(20): 17004-17017, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29757611

RESUMO

In this work, we demonstrated that the hydrogel obtained from a very simple and single synthetic molecule, N-heptyl-galactonamide was a suitable scaffold for the growth of neuronal cells in 3D. We evidenced by confocal microscopy the presence of the cells into the gel up to a depth of around 200 µm, demonstrating that the latter was permissive to cell growth and enabled a true 3D colonization and organization. It also supported successfully the differentiation of adult human neuronal stem cells (hNSCs) into both glial and neuronal cells and the development of a really dense neurofilament network. So the gel appears to be a good candidate for neural tissue regeneration. In contrast with other molecular gels described for cell culture, the molecule can be obtained at the gram scale by a one-step reaction. The resulting gel is very soft, a quality in accordance with the aim of growing neuronal cells, that requires low modulus substrates similar to the brain. But because of its fragility, specific procedures had to be implemented for its preparation and for cell labeling and confocal microscopy observations. Notably, the implementation of a controlled slow cooling of the gel solution was needed to get a very soft but nevertheless cohesive gel. In these conditions, very wide straight and long micrometric fibers were formed, held together by a second network of flexible narrower nanometric fibers. The two kinds of fibers guided the neurite and glial cell growth in a different way. We also underlined the importance of a tiny difference in the molecular structure on the gel performances: parent molecules, differing by a one-carbon increment in the alkyl chain length, N-hexyl-galactonamide and N-octyl-galactonamide, were not as good as N-heptyl-galactonamide. Their differences were analyzed in terms of gel fibers morphology, mechanical properties, solubility, chain parity, and cell growth.


Assuntos
Hidrogéis/química , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Neuritos , Neurogênese , Neurônios , Alicerces Teciduais
12.
J Colloid Interface Sci ; 504: 721-730, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622565

RESUMO

A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing.


Assuntos
Materiais Biocompatíveis/química , Géis/química , Micelas , Açúcares/química , Alcinos/química , Animais , Azidas/química , Linhagem Celular , Sobrevivência Celular , Química Click , Teste de Materiais , Camundongos , Modelos Moleculares , Neurônios/citologia , Reologia , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Gels ; 2(4)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30674156

RESUMO

A new bolaamphiphile analog featuring carbamate moieties was synthesized in six steps starting from thymidine. The amphiphile structure exhibits nucleoside-sugar polar heads attached to a hydrophobic spacer via carbamate (urethane) functions. This molecular structure, which possesses additional H-bonding capabilities, induces the stabilization of low-molecular-weight gels (LMWGs) in water. The rheological studies revealed that the new bolaamphiphile 7 stabilizes thixotropic hydrogels with a high elastic modulus (G' > 50 kPa).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA