Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 227(7): 888-900, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36409589

RESUMO

BACKGROUND: High-level BK polyomavirus (BKPyV) replication in allogeneic hematopoietic cell transplantation (HCT) predicts failing immune control and BKPyV-associated hemorrhagic cystitis. METHODS: To identify molecular markers of BKPyV replication and disease, we scrutinized BKPyV DNA-loads in longitudinal urine and plasma pairs from 20 HCT patients using quantitative nucleic acid testing (QNAT), DNase-I treatment prior to QNAT, next-generation sequencing (NGS), and tested cell-mediated immunity. RESULTS: We found that larger QNAT amplicons led to under-quantification and false-negatives results (P < .001). DNase-I reduced urine and plasma BKPyV-loads by >90% (P < .001), indicating non-encapsidated BKPyV genomes. DNase-resistant urine BKPyV-loads remained infectious in cell culture. BKPyV genome fragmentation of ≤250 bp impaired NGS coverage of genetic variation using 1000-bp and 5000-bp amplicons. Conversely, 250-bp amplicons captured viral minority variants. We identified genotype-specific and genotype-independent changes in capsid Vp1 or T-antigen predicted to escape from antibody neutralization or cytotoxic CD8 T-cells, respectively. Genotype-specific changes in immunodominant 9mers were associated with reduced or absent CD8 T-cell responses. Thus, failure to control BKPyV replication in HCT Patients may involve insufficient genotype-specific cytotoxic CD8 T-cell responses, potentially predictable by low neutralizing antibodies as well as genotype-independent immune escape. CONCLUSIONS: Our results provide new insights for patient evaluation and for designing immune protection through neutralizing antibodies, adoptive T-cell therapy, or vaccines.


Assuntos
Vírus BK , Transplante de Células-Tronco Hematopoéticas , Infecções por Polyomavirus , Humanos , Vírus BK/genética , Linfócitos T CD8-Positivos , Anticorpos Neutralizantes
2.
J Neurovirol ; 29(2): 232-236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097595

RESUMO

Due to its peculiar histopathological findings, pleomorphic xanthoastrocytoma (PXA), a rare cerebral tumor of young adults with a slow growth and a good prognosis, resembles to the lytic phase of progressive multifocal leukoencephalopathy, a fatal neurodegenerative disease caused by JC polyomavirus (JCPyV). Therefore, the presence of JCPyV DNA was examined in an 11-year-old child with xanthoastrocytoma, WHO grade 3, by quantitative PCR (qPCR) and nested PCR (nPCR) using primers amplifying sequences encoding the N- and C-terminal region of large T antigen (LTAg), the non-coding control region (NCCR), and viral protein 1 (VP1) DNA. The expression of transcripts from LTAg and VP1 genes was also evaluated. In addition, viral microRNAs' (miRNAs) expression was investigated. Cellular p53 was also searched at both DNA and RNA level. qPCR revealed the presence of JCPyV DNA with a mean value of 6.0 × 104 gEq/mL. nPCR gave a positive result for the 5' region of the LTAg gene and the NCCR, whereas 3' end LTAg and VP1 DNA sequences were not amplifiable. Only LTAg transcripts of 5' end were found whereas VP1 gene transcript was undetectable. Although in most cases, either Mad-1 or Mad-4 NCCRs have been identified in association with JCPyV-positive human brain neoplasms, the archetype NCCR structure was observed in the patient's sample. Neither viral miRNA miR-J1-5p nor p53 DNA and RNA were detected. Although the expression of LTAg supports the possible role of JCPyV in PXA, further studies are warranted to better understand whether the genesis of xanthoastrocytoma could depend on the transformation capacity of LTAg by Rb sequestration.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Doenças Neurodegenerativas , Adulto Jovem , Humanos , Criança , Sequência de Bases , Doenças Neurodegenerativas/genética , Proteína Supressora de Tumor p53/genética , Vírus JC/genética , MicroRNAs/genética , Antígenos Virais de Tumores/genética , DNA Viral/genética
3.
Virol J ; 16(1): 137, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727090

RESUMO

BACKGROUND: Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. METHODS: We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed. RESULTS: Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis. CONCLUSIONS: Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.


Assuntos
Antígenos Virais de Tumores/genética , Uso do Códon , Infecções por Polyomavirus/veterinária , Infecções por Polyomavirus/virologia , Polyomavirus/genética , Motivos de Aminoácidos , Animais , Composição de Bases , Aves , Biologia Computacional , Peixes , Humanos , Mamíferos , Filogenia , Polyomavirus/isolamento & purificação
4.
J Pathol ; 244(3): 265-270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205775

RESUMO

BK polyomavirus has been linked to urothelial carcinoma in immunosuppressed patients. Here, we performed comprehensive genomic analysis of a BK polyomavirus-associated, metachronous, multifocal and metastatic micropapillary urothelial cancer in a kidney transplant recipient. Dissecting cancer heterogeneity by sorting technologies prior to array-comparative genomic hybridization followed by short tandem repeat analysis revealed that the metastatic urothelial cancer was of donor origin (4-year-old male). The top 50 cancer-associated genes showed no key driver mutations as assessed by next-generation sequencing. Whole genome sequencing and BK polyomavirus-specific amplification provided evidence for episomal and subgenomic chromosomally integrated BK polyomavirus genomes, which carried the same unique 17-bp deletion signature in the viral non-coding control region (NCCR). Whereas no role in oncogenesis could be attributed to the host gene integration in chromosome 1, the 17-bp deletion in the NCCR increased early viral gene expression, but decreased viral replication capacity. Consequently, urothelial cells were exposed to high levels of the transforming BK polyomavirus early proteins large tumour antigen and small tumour antigen from episomal and integrated gene expression. Surgery combined with discontinuation of immunosuppression resulted in complete remission, but sacrificed the renal transplant. Thus, this report links, for the first time, BK polyomavirus NCCR rearrangements with oncogenic transformation in urothelial cancer in immunosuppressed patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Vírus BK/genética , Biomarcadores Tumorais/genética , Transplante de Rim/efeitos adversos , Infecções por Polyomavirus/virologia , Doadores de Tecidos , Infecções Tumorais por Vírus/virologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/virologia , Urotélio/virologia , Adulto , Vírus BK/imunologia , Vírus BK/patogenicidade , Transformação Celular Viral , Pré-Escolar , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido , Imunossupressores/efeitos adversos , Masculino , Metástase Neoplásica , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/imunologia , Resultado do Tratamento , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Urotélio/imunologia , Urotélio/patologia
5.
Microcirculation ; 21(6): 551-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24661565

RESUMO

OBJECTIVE: Isolation of rodent endothelial cells from lymphatic capillaries with yields that allow extensive functional studies remains challenging due to low cell numbers, variable purity, and limited growth potential. The purpose of this study was the generation and preliminary characterization of rat lymphatic cell line with extended replicative capacity. This cell line is intended for in vitro studies of cellular transport in lymphatic endothelium and for in vivo experiments in rat animal models. METHODS: We created a novel rat lymphatic immortalized cell line, SV40-LEC, using retroviral gene transfer of SV40 large T antigen. We confirmed expression of characteristic markers and then examined its growth and transport properties. RESULTS: SV40-LECs demonstrated improved proliferative capacity, but retained morphological characteristics of lymphatic cells and expression of established lymphatic markers. The cells form capillary-like network in vitro. SV40-LEC monolayer has similar permeability to that of the primary initial lymphatics. Paracellular transport in SV40-LECs is limited for substances >70 kDa. Barrier properties of the SV40-LECs can be modulated by cyclic adenosine monophosphate and histamine, which are known to affect microvascular permeability. CONCLUSION: The SV40-LECs provide an excellent tool for in vitro studies of properties of lymphatic endothelium, and may be suitable for in vivo transplantation studies.


Assuntos
Linhagem Celular Transformada , Células Endoteliais/citologia , Vasos Linfáticos/citologia , Animais , Antígenos Virais de Tumores/biossíntese , Antígenos Virais de Tumores/genética , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Retroviridae , Transdução Genética
6.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672065

RESUMO

Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs). In addition, the cellular miR-375, known to be deregulated in tumors, was examined. MCPyV DNA was found in 3 out of 11 OSCC and 4 out of 12 OPMD samples, with a viral mean value of 1.49 × 102 copies/mL. Viral integration was not observed and LTAg and VP1 transcripts were detected. Viral miRNAs were not detected whereas the cellular miR-375 was found over expressed in all MCPyV positive oral specimens. Our results reported evidence of MCPyV replication in both OSCC and OPMD suggesting the oral cavity as a site of replicative MCPyV infection, therefore underscoring an active role of this virus in the occurrence of oral lesions.

7.
Pathogens ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37513741

RESUMO

Merkel cell polyomavirus (MCPyV) is the etiological agent of the majority of Merkel cell carcinoma (MCC): a rare skin tumor. To improve our understanding of the role of MCPyV in MCCs, the detection and analysis of MCPyV DNA and transcripts were performed on primary tumors and regional lymph nodes from two MCC patients: one metastatic and one non-metastatic. MCPyV-DNA was searched by a quantitative polymerase chain reaction (qPCR), followed by the amplification of a Large T Antigen (LTAg), Viral Protein 1 (VP1) and Non-Coding Control Region (NCCR). LTAg and VP1 transcripts were investigated by reverse-transcription PCR (RT-PCR). Viral integration was also studied, and full-length LTAg sequencing was performed. qPCR revealed that the primary tumor of both patients and the lymph node of one patient was positive for the small t-antigen, with an average value of 7.0 × 102 copies/µg. The same samples harbored LTAg, NCCR and VP1 DNA. Sequencing results showed truncated LTAg with the conserved retinoblastoma (Rb) protein binding motif and VP1 and NCCR sequences identical to the MCC350 strain. RT-PCR detected LTAg but not VP1 transcripts. The MCPyV genome was integrated into the primary tumor of both patients. The results confirmed the connection between MCPyV and MCC, assuming integration, LTAg truncation and Rb sequestration as key players in MCPyV-mediated oncogenesis.

8.
Braz J Microbiol ; 53(4): 1987-1994, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279096

RESUMO

Merkel cell polyomavirus (MCPyV) is the cause of approximately 80% of Merkel cell carcinomas (MCC). The common types of non-melanoma skin cancer (NMSC) including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are histologically similar to MCC. In the present study, 58 NMSC formalin-fixed paraffin-embedded tissue (FFPE) samples including 12 SCC, 46 BCC, and 58 FFPE samples of adjacent non-tumoral margins as the control were included. Determination of large tumor antigens (LTAg) copy number was performed by qReal-Time PCR as a viral copy number per cell to elucidate MCPyV carcinogenic role in non-melanoma skin cancer. Out of 58 samples, 36 (62%) cancerous and 22 (37.9%) normal tumor margins were positive for MCPyV LTAg. Median copy numbers of MCPyV LTAg among all NMSC samples and non-tumoral margins were 0.308×10-2 and 0.269×10-3 copies per cell respectively (P=0.001). In addition, although the viral load in the majority of samples was detected to be lower than one copy per cell, in 4 BCC samples, a viral load higher than one LTAg copy per cell was detected. The present study revealed that the detection of higher levels of MCPyV LTAg viral load in some BCC and SCC samples may be correlated with the role of MCPyV in some cases of BCC and SCC skin cancer.


Assuntos
Carcinoma Basocelular , Carcinoma de Célula de Merkel , Carcinoma de Células Escamosas , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Poliomavírus das Células de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , DNA Viral/genética , DNA Viral/análise
9.
Vaccines (Basel) ; 9(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835157

RESUMO

BK polyomavirus (BKPyV) persists lifelong in renal and urothelial cells with asymptomatic urinary shedding in healthy individuals. In some immunocompromised persons after transplantation of hematopoietic stem cells (HSCT), the BKPyV high-rate replication is associated with haemorrhagic cystitis (HC). We tested whether the status of BKPyV immunity prior to HSCT could provide evidence for the BKPyV tendency to reactivate. We have shown that measurement of pretransplant anti-BKPyV 1 and 4 IgG levels can be used to evaluate the HC risk. Patients with anti-BKPyV IgG in the range of the 1st-2nd quartile of positive values and with positive clinical risk markers have a significantly increased HC risk, in comparison to the reference group of patients with "non-reactive" anti-BKPyV IgG levels and with low clinical risk (LCR) (p = 0.0009). The predictive value of pretransplant BKPyV-specific IgG was confirmed by determination of genotypes of the shed virus. A positive predictive value was also found for pretransplant T-cell immunity to the BKPyV antigen VP1 because the magnitude of IFN-γ T-cell response inversely correlated with posttransplant DNAuria and with HC. Our novel data suggest that specific T-cells control BKPyV latency before HSCT, and in this way may influence BKPyV reactivation after HSCT. Our study has shown that prediction using a combination of clinical and immunological pretransplant risk factors can help early identification of HSCT recipients at high risk of BKPyV disease.

10.
Bioinformation ; 14(2): 75-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618903

RESUMO

Simian virus 40 large T-antigen (SV40 LT-Ag) is a 708 amino acid nuclear phosphoprotein. Among many functions of LT-Ag is its ability to perform as an ATPase-helicase, catalyzing the unwinding of viral genome during replication. The LT-Ag has been employed in the studies of helicase structure and function, and has served as a model helicase for the screening of antiviral drugs that target viral helicase. In this study, using in vitro enzyme assays and in silico computer modeling, we screened a batch of 18 fluoroquinolones to assess their potential as antivirals by virtue of their inhibition of the LT-Ag helicase. We found all fluoroquinolones to be inhibitory to the helicase activity of LT-Ag. In our docking analysis, most of these tested drugs showed similarity in their interactions with LT-Ag. Our study shows the potential of fluoroquinolones as antiviral drugs and of SV40 LT-Ag as a model protein for screening drugs against viral helicases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA