Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512642

RESUMO

Room temperature (RT) synthesis of the ternary cesium lead bromide CsPbBr3 quantum dots with oleic acid and oleylamine ligands was developed by Zeng and coworkers in 2016. In their works, the supersaturated recrystallization (SR) was adopted as a processing method without requiring inert gas and high-temperature injection. However, the oleic acid ligand for haloplumbate is known to be relatively unstable. Hence, in this work, we employed the eco-friendly olive oil to replace the oleic acid portion for the SR process at RT. Resultantly, we found that the cube-shaped nanocrystal has a size of ~40-42 nm and an optical bandgap of ~2.3 eV independent of the surface ligands, but the photoluminescence lifetime (τav) and crystal packing are dependent on the ligand species, e.g., τav = 3.228 ns (olive oil and oleylamine; here less ordered) vs. 1.167 ns (oleic acid and oleylamine). Importantly, we explain the SR mechanism from the viewpoint of the classical LaMer model combined with the solvent engineering technique in details.

2.
ACS Appl Mater Interfaces ; 14(26): 29690-29702, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731012

RESUMO

Over the past decade, advances in the colloidal syntheses of octahedral-shaped Pt-Ni alloy nanocatalysts for use in fuel cell cathodes have raised our atomic-scale control of particle morphology and surface composition, which, in turn, helped raise their catalytic activity far above that of benchmark Pt catalysts. Future fuel cell deployment in heavy-duty vehicles caused the scientific priorities to shift from alloy particle activity to stability. Larger particles generally offer enhanced thermodynamic stability, yet synthetic approaches toward larger octahedral Pt-Ni alloy nanoparticles have remained elusive. In this study, we show how a simple manipulation of solvothermal synthesis reaction kinetics involving depressurization of the gas phase at different stages of the reaction allows tuning the size of the resulting octahedral nanocatalysts to previously unachieved scales. We then link the underlying mechanism of our approach to the classical "LaMer" model of nucleation and growth. We focus on large, annealed Mo-doped Pt-Ni octahedra and investigate their synthesis, post-synthesis treatments, and elemental distribution using advanced electron microscopy. We evaluate the electrocatalytic ORR performance and stability and succeed to obtain a deeper understanding of the enhanced stability of a new class of relatively large, active, and long-lived Mo-doped Pt-Ni octahedral catalysts for the cathode of PEMFCs.

3.
ACS Appl Mater Interfaces ; 13(44): 52385-52394, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699188

RESUMO

Supramolecular self-assembly of Fe3+ and tannic acid (TA) has received great attention in the fields of materials science and interface engineering because of its exceptional surface coating properties. Although advances in coating strategies often suggest that kinetics in the generation of interface-active Fe3+-TA species is deeply involved in the film formation, there is no acceptable elucidation for the coating process. In this work, we developed the enzyme-mediated kinetic control of Fe2+ oxidation to Fe3+ in a Fe2+-TA complex in the iron-gall-ink-revisited coating method. Specifically, hydrogen peroxide, produced in the glucose oxidase (GOx)-catalyzed reaction of d-glucose, accelerated Fe2+ oxidation, and the optimized kinetics profoundly facilitated the film formation to be about 9 times thicker. We also proposed a perspective considering the coating process as nucleation and growth. From this viewpoint, the kinetics in the generation of interface-active Fe3+-TA species should be optimized because it determines whether the interface-active species forms a film on the substrate (i.e., heterogeneous nucleation and film growth) or flocculates in solution (i.e., homogeneous nucleation and particle growth). Moreover, GOx was concomitantly embedded into the Fe3+-TA films with sustained catalytic activities, and the GOx-mediated coating system was delightfully adapted to catalytic single-cell nanoencapsulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA