Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
2.
Annu Rev Neurosci ; 40: 395-424, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28460185

RESUMO

The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Vias Visuais/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Estimulação Luminosa , Retina/metabolismo , Vias Visuais/metabolismo
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38383722

RESUMO

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.


Assuntos
Moléculas de Adesão Celular Neuronais , Neurônios , Humanos , Animais , Masculino , Feminino , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/fisiologia , Córtex Cerebral/metabolismo , Fenótipo , Proteínas da Matriz Extracelular/genética , Movimento Celular/fisiologia , Mamíferos/metabolismo
4.
Dev Dyn ; 253(10): 922-939, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38546215

RESUMO

BACKGROUND: Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS: Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS: This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Retina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Retina/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Células-Tronco/metabolismo , Apoptose/fisiologia , Proliferação de Células , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Regulatória Associada a mTOR
5.
J Neurosci ; 43(46): 7745-7765, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798130

RESUMO

Proper cortical lamination is essential for cognition, learning, and memory. Within the somatosensory cortex, pyramidal excitatory neurons elaborate axon collateral branches in a laminar-specific manner that dictates synaptic partners and overall circuit organization. Here, we leverage both male and female mouse models, single-cell labeling and imaging approaches to identify intrinsic regulators of laminar-specific collateral, also termed interstitial, axon branching. We developed new approaches for the robust, sparse, labeling of Layer II/III pyramidal neurons to obtain single-cell quantitative assessment of axon branch morphologies. We combined these approaches with cell-autonomous loss-of-function (LOF) and overexpression (OE) manipulations in an in vivo candidate screen to identify regulators of cortical neuron axon branch lamination. We identify a role for the cytoskeletal binding protein drebrin (Dbn1) in regulating Layer II/III cortical projection neuron (CPN) collateral axon branching in vitro LOF experiments show that Dbn1 is necessary to suppress the elongation of Layer II/III CPN collateral axon branches within Layer IV, where axon branching by Layer II/III CPNs is normally absent. Conversely, Dbn1 OE produces excess short axonal protrusions reminiscent of nascent axon collaterals that fail to elongate. Structure-function analyses implicate Dbn1S142 phosphorylation and Dbn1 protein domains known to mediate F-actin bundling and microtubule (MT) coupling as necessary for collateral branch initiation upon Dbn1 OE. Taken together, these results contribute to our understanding of the molecular mechanisms that regulate collateral axon branching in excitatory CPNs, a key process in the elaboration of neocortical circuit formation.SIGNIFICANCE STATEMENT Laminar-specific axon targeting is essential for cortical circuit formation. Here, we show that the cytoskeletal protein drebrin (Dbn1) regulates excitatory Layer II/III cortical projection neuron (CPN) collateral axon branching, lending insight into the molecular mechanisms that underlie neocortical laminar-specific innervation. To identify branching patterns of single cortical neurons in vivo, we have developed tools that allow us to obtain detailed images of individual CPN morphologies throughout postnatal development and to manipulate gene expression in these same neurons. Our results showing that Dbn1 regulates CPN interstitial axon branching both in vivo and in vitro may aid in our understanding of how aberrant cortical neuron morphology contributes to dysfunctions observed in autism spectrum disorder and epilepsy.


Assuntos
Transtorno do Espectro Autista , Neuropeptídeos , Animais , Feminino , Masculino , Camundongos , Transtorno do Espectro Autista/metabolismo , Axônios/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
6.
Small ; : e2310175, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402424

RESUMO

Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

7.
Small ; 20(2): e2305327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670556

RESUMO

Low-cost fabric-based top-emitting polymer light-emitting devices (Fa-TPLEDs) have aroused increasing attention due to their remarkable potential applications in wearable displays. However, it is still challenging to realize efficient all-solution-processed devices from bottom electrodes to top electrodes with large-scale fabrication. Here, a smooth reflective Ag cathode integrated on fabric by one-step silver mirror reaction and a composite transparent anode of polydimethylsiloxane/silver nanowires/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) via a water-assisted peeling method are presented, both of which possess excellent optoelectrical properties and robust mechanical flexibility. The Fa-TPLEDs are constructed by spin-coating functional layers on the bottom reflective cathodes and laminating the top transparent anodes. The Fa-TPLEDs show a current efficiency of 16.3 cd A-1 , an external quantum efficiency of 4.9% and angle-independent electroluminescence spectra. In addition, the Fa-TPLEDs possess excellent mechanical stability, maintaining a current efficiency of 14.3 cd A-1 after 200 bending cycles at a radius of 4 mm. The results demonstrate that the integration of solution-processed reflective cathodes and transparent anodes sheds light on a new avenue to construct low-cost and efficient fabric-based devices, showing great potential applications in emerging smart flexible/wearable electronics.

8.
Dev Dyn ; 252(2): 305-319, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36131367

RESUMO

BACKGROUND: The vertebrate retina is an organized laminar structure comprised of distinct cell types populating three nuclear layers. During development, each retinal cell type follows a stereotypical temporal order of genesis, differentiation, and migration, giving rise to its stratified organization. Once born, the precise positioning of cells along the apico-basal (radial) axis of the retina is critical for subsequent connections to form, relying on highly orchestrated migratory processes. While these processes are critical for visual function to arise, the regulators of cellular migration and retinal lamination remain largely unexplored. RESULTS: We report a role for a microtubule-interacting protein, Mllt11 (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q) in mammalian retinal cell migration during retinogenesis. We show that Mllt11 loss-of-function in mouse retinal neuroblasts affected the migration of ganglion and amacrine cells into the ganglion cell layer and led to their aberrant accumulation in the inner nuclear and plexiform layers. CONCLUSIONS: We demonstrate a role for Mllt11 in neuroblast migration and formation of the ganglion cell layer of the retina.


Assuntos
Células Amácrinas , Retina , Animais , Camundongos , Células Amácrinas/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Movimento Celular , Proteínas do Citoesqueleto , Mamíferos
9.
Small ; 19(38): e2301472, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37218011

RESUMO

The combination of optical transparency and mechanical strength is a highly desirable attribute of wood-based glazing materials. However, such properties are typically obtained by impregnation of the highly anisotropic wood with index-matching fossil-based polymers. In addition, the presence of hydrophilic cellulose leads to a limited water resistance. Herein, this work reports on an adhesive-free lamination that uses oxidation and densification to produce transparent all-biobased glazes. The latter are produced from multilayered structures, free of adhesives or filling polymers, simultaneously displaying high optical clarity and mechanical strength, in both dry and wet conditions. Specifically, high values of optical transmittance (≈85.4%), clarity (≈20% with low haze) at a thickness of ≈0.3 mm, and highly isotropic mechanical strength and water resistance (wet strength of ≈128.25 MPa) are obtained for insulative glazes exhibiting low thermal conductivity (0.27 W m-1 K-1 , almost four times lower than glass). The proposed strategy results in materials that are systematically tested, with the leading effects of self-adhesion induced by oxidation rationalized by ab initio molecular dynamics simulation. Overall, this work demonstrates wood-derived materials as promising solutions for energy-efficient and sustainable glazing applications.

10.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937848

RESUMO

Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.

11.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447775

RESUMO

As is well known, the magnetostrictive phenomenon of electrical steel sheet is the main source of electricity in equipment such as transformers. The magnetostrictive characteristic of the actual transformer core is more complicated than that of single-sheet steel. The magnetostriction phenomenon of the transformer core cannot be fully understood by studying only a single piece of electrical steel, so it is necessary to study the local magnetic characteristics of the transformer directly. In this paper, two-limb, one-phase transformer core with a multi-step-lap construction was assembled, a laminated magnetostrictive testing system based on triaxial strain gauges was built, and the local magnetic characteristics were studied using a self-developed B-H vector sensor. The magnetostrictive and magnetic properties in different local regions were measured and analyzed under several magnetization patterns, and the influence of DC bias on the magnetostrictive property of the corner, yoke, and limb of the core was investigated. The influence of the position of the clamp on the magnetostriction of the transformer core was also studied. The magnetostrictive strain of the single sheet and laminated core was compared and discussed. The results showed that the strain caused by the interaction between laminations in this area can be effectively reduced when clamping in the middle of the yoke.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Extremidades , Fenômenos Físicos , Aço
12.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766048

RESUMO

The development of renewable energy sources has grown increasingly as the world shifts toward lowering carbon emissions and supporting sustainability. Solar energy is one of the most promising renewable energy sources, and its harvesting potential has gone beyond typical solar panels to small, portable devices. Also, the trend toward smart buildings is becoming more prevalent at the same time as sensors and small devices are becoming more integrated, and the demand for dependable, sustainable energy sources will increase. Our work aims to tackle the issue of identifying the most suitable protective layer for small optical devices that can efficiently utilize indoor light sources. To conduct our research, we designed and tested a model that allowed us to compare the performance of many small panels made of monocrystalline cells laminated with three different materials: epoxy resin, an ethylene-tetrafluoroethylene copolymer (ETFE), and polyethylene terephthalate (PET), under varying light intensities from LED and CFL sources. The methods employed encompass contact angle measurements of the protective layers, providing insights into their wettability and hydrophobicity, which indicates protective layer performance against humidity. Reflection spectroscopy was used to evaluate the panels' reflectance properties across different wavelengths, which affect the light amount arrived at the solar cell. Furthermore, we characterized the PV panels' electrical behavior by measuring short-circuit current (ISC), open-circuit voltage (VOC), maximum power output (Pmax), fill factor (FF), and load resistance (R). Our findings offer valuable insights into each PV panel's performance and the protective layer material's effect. Panels with ETFE layers exhibited remarkable hydrophobicity with a mean contact angle of 77.7°, indicating resistance against humidity-related effects. Also, panels with ETFE layers consistently outperformed others as they had the highest open circuit voltage (VOC) ranging between 1.63-4.08 V, fill factor (FF) between 35.9-67.3%, and lowest load resistance (R) ranging between 11,268-772 KΩ.cm-2 under diverse light intensities from various light sources, as determined by our results. This makes ETFE panels a promising option for indoor energy harvesting, especially for powering sensors with low power requirements. This information could influence future research in developing energy harvesting solutions, thereby making a valuable contribution to the progress of sustainable energy technology.

13.
Dev Dyn ; 251(2): 362-376, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34268820

RESUMO

BACKGROUND: The development of the central nervous system (CNS) requires critical cell signaling molecules to coordinate cell proliferation and migration in order to structure the adult tissue. Chicken tumor virus #10 Regulator of Kinase (CRK) and CRK-like (CRKL) are adaptor proteins with pre-metazoan ancestry and are known to be required for patterning laminated structures downstream of Reelin (RELN), such as the cerebral cortex, cerebellum, and hippocampus. CRK and CRKL also play crucial roles in a variety of other growth factor and extracellular matrix signaling cascades. The neuronal retina is another highly laminated structure within the CNS that is dependent on migration for proper development, but the cell signaling mechanisms behind neuronal positioning in the retina are only partly understood. RESULTS: We find that crk and crkl have largely overlapping expression within the developing zebrafish nervous system. We find that their disruption results in smaller eye size and loss of retinal lamination. CONCLUSIONS: Our data indicate that Crk adaptors are critical for proper development of the zebrafish neural retina in a crk/crkl dose-dependent manner.


Assuntos
Proteínas Nucleares , Peixe-Zebra , Animais , Proliferação de Células , Proteínas Nucleares/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo
14.
Surg Radiol Anat ; 45(3): 247-253, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689056

RESUMO

BACKGROUND AND PURPOSE: The calcaneal tendon sheath has several vascular routes and is a common site of inflammation. In adults, it is associated with the plantaris muscle tendon, but there are individual variations in the architecture and insertion site. We describe changes of the tendon sheath during fetal development. MATERIALS AND METHODS: Histological sections of the unilateral ankles of 20 fetuses were examined, ten at 8-12 weeks gestational age (GA) and twelve at 26-39 weeks GA. RESULTS: At 8-12 weeks GA, the tendon sheath simply consisted of a multilaminar layer that involved the plantaris tendon. At 26-39 weeks, each calcaneal tendon had a multilaminar sheath that could be roughly divided into three layers. The innermost layer was attached to the tendon and sometimes contained the plantaris tendon; the multilaminar intermediate layer contained vessels and often contained the plantaris tendon; and the outermost layer was thick and joined other fascial structures, such as a tibial nerve sheath and subcutaneous plantar fascia. The intermediate layer merged with the outermost layer near the insertion to the calcaneus. CONCLUSION: In spite of significant variations among adults, the fetal plantar tendon was always contained in an innermost or intermediate layer of the calcaneal tendon sheath in near-term fetuses. After birth, mechanical stresses such as walking might lead to fusion or separation of the multilaminar sheath in various manners. When reconstruction occurs postnatally, there may be individual variations in blood supply routes and morphology of the distal end of the plantaris tendon.


Assuntos
Tendão do Calcâneo , Adulto , Humanos , Lactente , Tendão do Calcâneo/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Extremidade Inferior , Feto , Idade Gestacional
15.
Development ; 146(12)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126979

RESUMO

Developmental programs that arrange cells and tissues into patterned organs are remarkably robust. In the developing vertebrate retina, for example, neurons reproducibly assemble into distinct layers giving the mature organ its overall structured appearance. This stereotypic neuronal arrangement, termed lamination, is important for efficient neuronal connectivity. Although retinal lamination is conserved in many vertebrates, including humans, how it emerges from single cell behaviour is not fully understood. To shed light on this issue, we here investigated the formation of the retinal horizontal cell layer. Using in vivo light sheet imaging of the developing zebrafish retina, we generated a comprehensive quantitative analysis of horizontal single cell behaviour from birth to final positioning. Interestingly, we find that all parameters analysed, including cell cycle dynamics, migration paths and kinetics, as well as sister cell dispersal, are very heterogeneous. Thus, horizontal cells show individual non-stereotypic behaviour before final positioning. Yet these initially variable cell dynamics always generate the correct laminar pattern. Consequently, our data show that the extent of single cell stochasticity in the lamination of the vertebrate retina is underexplored.


Assuntos
Movimento Celular , Neurônios/citologia , Retina/embriologia , Peixe-Zebra/embriologia , Animais , Blastômeros/citologia , Ciclo Celular , Linhagem da Célula , Processamento de Imagem Assistida por Computador , Cinética , Camundongos , Mitose , Análise de Célula Única , Fuso Acromático , Processos Estocásticos
16.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458979

RESUMO

Resonating MEMS mass sensors are microdevices with broad applications in fields such as bioscience and biochemistry. Their advantageous surface-to-volume ratio makes their resonant frequency highly sensitive to variations in their mass induced by surface depositions. Recent global challenges, such as water quality monitoring or pandemic containment, have increased the need for low-cost (even disposable), rapidly fabricated microdevices as suitable detectors. Resonant MEMS mass sensors are among the best candidates. This paper introduces a simple and robust fabrication of polymeric piezoelectric resonating MEMS mass sensors. The microfabrication technology replaces the traditional layer-by-layer micromachining techniques with laser micromachining to gain extra simplicity. Membrane-based resonant sensors have been fabricated to test the technology. Their characterization results have proven that the technology is robust with good reproducibility (around 2% batch level variations in the resonant frequency). Initial tests for the MEMS mass sensors' sensitivity have indicated a sensitivity of 340 Hz/ng. The concept could be a starting point for developing low-cost MEMS sensing solutions for pandemic control, health examination, and pollution monitoring.


Assuntos
Sistemas Microeletromecânicos , Microtecnologia , Polímeros , Reprodutibilidade dos Testes
17.
Dent Traumatol ; 38(3): 238-243, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35083841

RESUMO

BACKGROUND/AIM: Mouthguard thickness influences the protection ability from orofacial trauma. The aim of this study was to propose a new design for mouthguards and to evaluate the effect of the lamination order on the thicknesses of mouthguards. MATERIALS AND METHODS: Mouthguard sheets of 2.0-mm and 4.0-mm ethylene vinyl acetate were used. The sheets were pressure formed using a pressure former. Two lamination conditions were examined: The condition 24P used the 2.0-mm sheet as the first layer and 4.0-mm sheet as the second layer. The condition 42P used the 4.0-mm sheet as the first layer and 2.0-mm sheet as the second layer. The first layer was trimmed to cover only the anterior region, and then the second layer was formed over the first layer. Mouthguard thickness was measured using a measuring device at the labial surface of the central incisor, plus the buccal and occlusal surfaces of the first molar. Differences in thickness by measurement region of mouthguards formed under different lamination conditions were analyzed by two-way analysis of variance. RESULTS: Mouthguard thickness differed among the regions at the central incisors and the first molars (p < .01). The thickness at the labial surface of the central incisor became statistically significantly larger with the 42P condition (3.38 mm) than with the 24P condition (3.30 mm) (p < .05). The thickness at the buccal and occlusal surfaces of the first molar became statistically significantly larger with the 24P condition (2.25 mm and 2.72 mm, respectively) than with the 42P condition (1.23 mm and 1.44 mm, respectively) (p < .01). CONCLUSIONS: The results suggest that the combination of the 2.0-mm and 4.0-mm sheets could obtain the necessary thickness for the prevention at the labial surface of the central incisor and buccal surface of the first molar.


Assuntos
Protetores Bucais , Desenho de Equipamento , Dente Molar , Pressão , Vácuo
18.
Dev Biol ; 467(1-2): 95-107, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919944

RESUMO

The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Colículos Superiores/embriologia , Tretinoína/metabolismo , Animais , Embrião de Galinha , Galinhas
19.
Crit Rev Food Sci Nutr ; 61(15): 2601-2621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32588646

RESUMO

Active packaging (AP) is a new class of innovative food packaging, containing bioactive compounds, is able to maintain the quality of food and extend its shelf life by releasing active agent during storage. The main challenge in designing the AP system is slowing the release rate of active compounds for its prolonged activity. Controlled-release active packaging (CRP) is an innovative technology that provides control in the release of active compounds during storage. Various approaches have been proposed to design CRP. The purpose of this review was to gather and present the strategies utilized for release controlling of active compounds from food AP systems. The chemical modification of polymers, the preparation of multilayer films and the use of cross-linking agents are some methods tried in the last decades. Other approaches use molecular complexes and irradiation treatments. Micro- or nano-encapsulation of active compounds and using nano-structured materials in the AP film matrix are the newest techniques used for the preparation of CRP systems. The action mechanism for each technique was described and an effort was made to highlight representative published papers about each release controlling approach. This review will benefit future prospects of exploring other innovative release controlling methods in food CRP.


Assuntos
Embalagem de Alimentos , Polímeros , Preparações de Ação Retardada , Conservação de Alimentos
20.
Heart Vessels ; 35(6): 859-867, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31897641

RESUMO

Implantable organ-like grafts made using tissue engineering techniques could potentially be used as circulatory assist devices in people with heart failure. The aims of this study were to engineer implantable, thick cardiac tubes by the stepwise transplantation of cardiac cell sheets onto intestinal mesentery and confirm that these cardiac tubes exhibited pulsatile activity and generated an internal pressure. Cell sheets were created by culturing neonatal rat cardiac cells on temperature-responsive dishes. After harvesting, three cell sheets were stacked, and the triple-layered cell sheet was rolled around a section of endotracheal tube. The resulting construct was cultured to generate a cardiac tube. In the single-step group (n = 6), a cardiac tube was implanted onto the intestinal mesentery of a rat. In the double-step group (n = 6), a cardiac tube was implanted onto the intestinal mesentery of a rat, and another new cardiac tube was inserted into the original cardiac tube one day later. The pulsations and internal pressures of the implanted cardiac tubes were evaluated 1, 2 and 4 weeks after transplantation. Histology and immunohistochemistry were used to confirm whether vasculature was present in the cardiac tubes at 4 weeks after transplantation. We found that the cardiac tubes developed spontaneous pulsations from 1 week after transplantation. The average internal pressures of the cardiac tubes at 4 weeks after transplantation were 1.8 ± 1.0 mmHg in the single-step group and 2.5 ± 0.3 mmHg in the double-step group. The cardiac tubes in the double-step group contracted in response to electrical stimulation at 4 weeks after transplantation. Histological and immunohistochemical analyses revealed engraftment of the transplanted cardiac cell sheets and neovascularization of the cardiac tubes in both groups. Our findings demonstrate that it is feasible to generate functional cardiac tubes using the mesentery as a vascular bed. Further development of this technique will include the creation of a thicker tube, transplantation of the tube into major vessels and evaluation of the function of the tube under physiological conditions.


Assuntos
Técnicas de Cultura de Células , Mesentério/cirurgia , Contração Miocárdica , Miócitos Cardíacos/transplante , Engenharia Tecidual , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Sobrevivência de Enxerto , Masculino , Miócitos Cardíacos/fisiologia , Neovascularização Fisiológica , Pressão , Ratos Endogâmicos F344 , Ratos Nus , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA