Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 54(6): 387, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400963

RESUMO

This study aimed to determine the effects of the breeder age on the egg yield and egg quality traits of Landes geese in the first egg production cycle. One hundred ninety-four Landes geese aged 48 weeks were kept in the yard area throughout the egg production period. Egg number, egg weight, egg mass production, and goose-day egg production were significantly affected by the breeder age (p < 0.001). Breeder age affected the albumen index, yolk index, Haugh unit, albumen pH, yolk pH, and yolk color values. The albumen index, yolk index, and yolk color values were significantly higher at 55 weeks of age compared to the other breeder ages (62 and 64 weeks of age) (p < 0.05; p < 0.001). The shape index, albumen ratio, and yolk ratio were not significantly affected by the breeder age. There was a decrease in the shell thickness, albumen index, and yolk index as the egg production period progressed. Since the shell thickness, albumen index, and yolk index decreased with age, it is concluded that the egg quality of Landes geese may deteriorate with age.


Assuntos
Albuminas , Gansos , Animais , Fenótipo
2.
Asian-Australas J Anim Sci ; 27(9): 1244-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25178366

RESUMO

Goose fatty liver is one of the most delicious and popular foods in the world, but there is no reliable genetic marker for the early selection and breeding of geese with good liver-producing potential. In our study, one hundred and twenty-four 78-day-old Landes geese bred in Shunda Landes goose breeding farm, Jiutai, Jilin, China were selected randomly. The fatty livers were sampled each week after overfeeding during a three week period. Polymerase chain reaction-single strand conformation polymorphism and DNA sequencing were used to identify single nucleotide polymorphisms (SNPs) of fatty acid synthase (FAS), which is an important enzyme involved in the synthesis of fat under both physiological and pathological conditions. Least-squares correlation was established between these SNPs and fatty liver weight, abdominal fat weight, and intestinal fat weight of the overfed Landes geese, respectively. The results showed that fatty liver weight of geese with EF and FF genotypes (amplified by primer P1) was significantly higher than that of the EE genotype (p<0.05), and liver weight of CD and DD genotypes (amplified by primer P2) was significantly higher than that of the CC genotype (p<0.05). Different genotype combinations showed different liver weights, and from highest to lowest were ABDD, DDEF, DDFF, DDEE, ABEF, ABFF, AADD, and CDEF. Further analysis of DNA sequencing showed that there were two SNPs within the 5' promoter region the FAS gene. The geese of EF and FF genotypes carried a change of T to C, and the geese of CD and DD genotypes carried a change of A to G. The changes of the bases could potentially influence the binding of some transcription factors to this region as to regulate FAS gene. To our knowledge, this is the first report of SNPs found within the 5' promoter region of the Landes goose FAS gene, and our data will provide an insight for early selection of geese for liver production.

3.
Front Immunol ; 15: 1327166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375472

RESUMO

As the largest peripheral lymphoid organ in poultry, the spleen plays an essential role in regulating the body's immune capacity. However, compared with chickens and ducks, information about the age- and breed-related changes in the goose spleen remains scarce. In this study, we systematically analyzed and compared the age-dependent changes in the morphological, histological, and transcriptomic characteristics between Landes goose (LG; Anser anser) and Sichuan White goose (SWG; Anser cygnoides). The results showed a gradual increase in the splenic weights for both LG and SWG until week 10, while their splenic organ indexes reached the peak at week 6. Meanwhile, the splenic histological indexes of both goose breeds continuously increased with age, reaching the highest levels at week 30. The red pulp (RP) area was significantly higher in SWG than in LG at week 0, while the splenic corpuscle (AL) diameter was significantly larger in LG than in SWG at week 30. At the transcriptomic level, a total of 1710 and 1266 differentially expressed genes (DEGs) between week 0 and week 30 were identified in spleens of LG and SWG, respectively. Meanwhile, a total of 911 and 808 DEGs in spleens between LG and SWG were identified at weeks 0 and 30, respectively. Both GO and KEGG enrichment analysis showed that the age-related DEGs of LG or SWG were dominantly enriched in the Cell cycle, TGF-beta signaling, and Wnt signaling pathways, while most of the breed-related DEGs were enriched in the Neuroactive ligand-receptor interaction, Cytokine-cytokine receptor interaction, ECM-receptor interaction, and metabolic pathways. Furthermore, through construction of protein-protein interaction networks using significant DEGs, it was inferred that three hub genes including BUB1, BUB1B, and TTK could play crucial roles in regulating age-dependent goose spleen development while GRIA2, GRIA4, and RYR2 could be crucial for the breed-specific goose spleen development. These data provide novel insights into the splenic developmental differences between Chinese and European domestic geese, and the identified crucial pathways and genes are helpful for a better understanding of the mechanisms regulating goose immune functions.


Assuntos
Gansos , Baço , Animais , Gansos/genética , Galinhas/genética , Perfilação da Expressão Gênica , Transcriptoma
4.
Animals (Basel) ; 12(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35739867

RESUMO

Betaine is a well-established supplement used in livestock feeding. In our previous study, betaine was shown to result in the redistribution of body fat, a healthier steatosis phenotype, and an increased liver weight and triglyceride storage of the Landes goose liver, which is used for foie-gras production. However, these effects are not found in other species and strains, and the underlying mechanism is unclear. Here, we studied the underpinning molecular mechanisms by developing an in vitro fatty liver cell model using primary Landes goose hepatocytes and a high-glucose culture medium. Oil red-O staining, a mitochondrial membrane potential assay, and a qRT-PCR were used to quantify lipid droplet characteristics, mitochondrial ß-oxidation, and fatty acid metabolism-related gene expression, respectively. Our in vitro model successfully simulated steatosis caused by overfeeding. Betaine supplementation resulted in small, well-distributed lipid droplets, consistent with previous experiments in vivo. In addition, mitochondrial membrane potential was restored, and gene expression of fatty acid synthesis genes (e.g., sterol regulatory-element binding protein, diacylglycerol acyltransferase 1 and 2) was lower after betaine supplementation. By contrast, the expression of lipid hydrolysis transfer genes (mitochondrial transfer protein and lipoprotein lipase) was higher. Overall, the results provide a scientific basis and theoretical support for the use of betaine in animal production.

5.
Transbound Emerg Dis ; 69(2): 349-359, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33417748

RESUMO

In May 2018, Landes geese raised in Weifang, Shandong Province, China, developed a disease characterized by thickened oesophageal mucosa and white, round ulcers. Based on pathogen isolation and identification, differential culture and morphological observations, Candida albicans (C. albicans) was identified as the causative pathogen from the oesophagus of infected geese, and artificial infection experiments were then performed using the isolated strains. In experimental reproduction, the symptoms of infected geese were consistent with those of natural infection, and gosling morbidity and mortality were 75% and 60%, respectively. Re-isolation of the strain from the dead goslings confirmed C. albicans as the causative pathogen of oesophageal ulcers. We further performed internal transcribed space rDNA sequence analysis, ABC genotyping and multi-locus sequence typing analysis. We observed 100% sequence similarity between the two strains, designated as WFCL and WFLQ, which were isolated from different regions, with 100% homology between the strains isolated in the present study and the human-origin C. albicans strains isolated previously from China. The goose-origin strains isolated in this study and the human-origin C. albicans isolates were included in the same branch in phylogenetic trees analysis, indicating that the strain responsible for oesophageal ulcer in geese is closely related to human-origin C. albicans. In addition, based on eBURST analysis of sequence types, goose-origin C. albicans strains were relatively independent in terms of population evolution. To the best of our knowledge, this is the first detailed report on goose oesophageal ulceration caused by C. albicans infection in geese. Considering that C. albicans is an important zoonotic pathogen, this study provides a reference for further studies on avian C. albicans infections and is important for ensuring public health and safety.


Assuntos
Candida albicans , Gansos , Animais , Candida albicans/genética , Genótipo , Tipagem de Sequências Multilocus/veterinária , Filogenia
6.
Front Microbiol ; 13: 970563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204629

RESUMO

The effects of brewers' spent grain (BSG) diets on the fatty liver deposition and the cecal microbial community were investigated in a total of 320 healthy 5-day-old Landes geese. These geese were randomly and evenly divided into 4 groups each containing 8 replicates and 10 geese per replicate. These four groups of geese were fed from the rearing stage (days 5-60) to the overfeeding stage (days 61-90). The Landes geese in group C (control) were fed with basal diet (days 5-90); group B fed first with basal diet in the rearing stage and then basal diet + 4% BSG in the overfeeding stage; group F first with basal diet + 4% BSG during the rearing stage and then basal diet in the overfeeding stage; and group W with basal diet + 4% BSG (days 5-90). The results showed that during the rearing stage, the body weight (BW) and the average daily gain (ADG) of Landes geese were significantly increased in groups F and W, while during the overfeeding stage, the liver weights of groups W and B were significantly higher than that of group C. The taxonomic structure of the intestinal microbiota revealed that during the overfeeding period, the relative abundance of Bacteroides in group W was increased compared to group C, while the relative abundances of Escherichia-Shigella and prevotellaceae_Ga6A1_group were decreased. Results of the transcriptomics analysis showed that addition of BSG to Landes geese diets altered the expression of genes involved in PI3K-Akt signaling pathway and sphingolipid metabolism in the liver. Our study provided novel experimental evidence based on the cecal microbiota to support the application of BSG in the regulation of fatty liver deposition by modulating the gut microbiota in Landes geese.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA