Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2024): 20232771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864334

RESUMO

Land use change alters floral resource availability, thereby contributing to declines in important pollinators. However, the severity of land use impact varies by species, influenced by factors such as dispersal ability and resource specialization, both of which can correlate with body size. Here. we test whether floral resource availability in the surrounding landscape (the 'matrix') influences bee species' abundance in isolated remnant woodlands, and whether this effect varies with body size. We sampled quantitative flower-visitation networks within woodland remnants and quantified floral energy resources (nectar and pollen calories) available to each bee species both within the woodland and the matrix. Bee abundance in woodland increased with floral energy resources in the surrounding matrix, with strongest effects on larger-bodied species. Our findings suggest important but size-dependent effects of declining matrix floral resources on the persistence of bees in remnant woodlands, highlighting the need to incorporate landscape-level floral resources in conservation planning for pollinators in threatened natural habitats.


Assuntos
Abelhas , Tamanho Corporal , Metabolismo Energético , Florestas , Polinização , Densidade Demográfica , Abelhas/anatomia & histologia , Abelhas/metabolismo , Néctar de Plantas/metabolismo , Biodiversidade , Animais
2.
Glob Chang Biol ; 30(7): e17401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041207

RESUMO

Climate change in high latitude regions leads to both higher temperatures and more precipitation but their combined effects on terrestrial ecosystem processes are poorly understood. In nitrogen (N) limited and often moss-dominated tundra and boreal ecosystems, moss-associated N2 fixation is an important process that provides new N. We tested whether high mean annual precipitation enhanced experimental warming effects on growing season N2 fixation in three common arctic-boreal moss species adapted to different moisture conditions and evaluated their N contribution to the landscape level. We measured in situ N2 fixation rates in Hylocomium splendens, Pleurozium schreberi and Sphagnum spp. from June to September in subarctic tundra in Sweden. We exposed mosses occurring along a natural precipitation gradient (mean annual precipitation: 571-1155 mm) to 8 years of experimental summer warming using open-top chambers before our measurements. We modelled species-specific seasonal N input to the ecosystem at the colony and landscape level. Higher mean annual precipitation clearly increased N2 fixation, especially during peak growing season and in feather mosses. For Sphagnum-associated N2 fixation, high mean annual precipitation reversed a small negative warming response. By contrast, in the dry-adapted feather moss species higher mean annual precipitation led to negative warming effects. Modelled total growing season N inputs for Sphagnum spp. colonies were two to three times that of feather mosses at an area basis. However, at the landscape level where feather mosses were more abundant, they contributed 50% more N than Sphagnum. The discrepancy between modelled estimates of species-specific N input via N2 fixation at the moss core versus ecosystem scale, exemplify how moss cover is essential for evaluating impact of altered N2 fixation. Importantly, combined effects of warming and higher mean annual precipitation may not lead to similar responses across moss species, which could affect moss fitness and their abilities to buffer environmental changes.


Assuntos
Briófitas , Mudança Climática , Fixação de Nitrogênio , Chuva , Estações do Ano , Tundra , Briófitas/fisiologia , Briófitas/crescimento & desenvolvimento , Suécia
3.
Environ Sci Technol ; 58(22): 9601-9611, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761136

RESUMO

Agricultural land use for export commodities leads to significant biodiversity impacts. A spatially detailed assessment of these impacts is crucial for implementing effective mitigation policies. Using cocoa cultivation and exports in Côte d'Ivoire as an example, we present a novel framework that combines earth observations, enhanced landscape-scale biodiversity models, and subnational export supply chain data sets to track the tele-connected potential biodiversity impacts of export groups and importing countries. We found that cocoa cultivation accounts for ∼44% of the biodiversity impacts in Côte d'Ivoire's cocoa cultivation areas, with >90% attributable to cocoa exports. The top 10 importing countries account for ∼84% of these impacts. Our method offers improved spatial detail compared to the existing approaches, facilitating the identification of biodiversity impact hotspots. Additionally, the biodiversity impacts of agroforestry cocoa are not always lower compared to full-sun cocoa, especially when agroforestry systems are established in regions of high biodiversity importance. Our transferable framework provides a comprehensive understanding of biodiversity footprint and promotes informed decision-making for sustainable agricultural production, processing, and trade. Our framework's application is currently constrained by the scarcity of detailed supply chain data sets; we underscore the urgent need for improved supply chain transparency to fully unlock the framework's potential.


Assuntos
Agricultura , Biodiversidade , Cacau , Côte d'Ivoire
4.
Ecol Lett ; 26(10): 1700-1713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458203

RESUMO

Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.


Assuntos
Ecossistema , Cadeia Alimentar , Retroalimentação
5.
Environ Sci Technol ; 57(41): 15608-15616, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796045

RESUMO

Procedures for environmental risk assessment for pesticides are under continuous development and subject to debate, especially at higher tier levels. Spatiotemporal dynamics of both pesticide exposure and effects at the landscape scale are largely ignored, which is a major flaw of the current risk assessment system. Furthermore, concrete guidance on risk assessment at landscape scales in the regulatory context is lacking. In this regard, we present an integrated modular simulation model system that includes spatiotemporally explicit simulation of pesticide application, fate, and effects on aquatic organisms. As a case study, the landscape model was applied to the Rummen, a river catchment in Belgium with a high density of pome fruit orchards. The application of a pyrethroid to pome fruit and the corresponding drift deposition on surface water and fate dynamics were simulated. Risk to aquatic organisms was quantified using a toxicokinetic/toxicodynamic model for individual survival at different levels of spatial aggregation, ranging from the catchment scale to individual stream segments. Although the derivation of landscape-scale risk assessment end points from model outputs is straightforward, a dialogue within the community, building on concrete examples as provided by this case study, is urgently needed in order to decide on the appropriate end points and on the definition of representative landscape scenarios for use in risk assessment.


Assuntos
Praguicidas , Piretrinas , Poluentes Químicos da Água , Bélgica , Frutas/química , Praguicidas/análise , Modelos Biológicos , Medição de Risco , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 342: 118087, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196613

RESUMO

A solution approach is proposed to optimize the selection of landscape cells for inclusion in firebreaks. It involves linking spatially explicit information on a landscape's ecological values, historical ignition patterns and fire spread behavior. A firebreak placement optimization model is formulated that captures the tradeoff between the direct loss of biodiversity due to the elimination of vegetation in areas designated for placement of firebreaks and the protection provided by the firebreaks from losses due to future forest fires. The optimal solution generated by the model reduced expected losses from wildfires on a biodiversity combined index due to wildfires by 30% relative to a landscape without any treatment. It also reduced expected losses by 16% compared to a randomly chosen solution. These results suggest that biodiversity loss resulting from the removal of vegetation in areas where firebreaks are placed can be offset by the reduction in biodiversity loss due to the firebreaks' protective function.


Assuntos
Incêndios , Incêndios Florestais , Biodiversidade , Florestas
7.
Reg Environ Change ; 23(1): 29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713958

RESUMO

Climate change severely affects mountain forests and their ecosystem services, e.g., by altering disturbance regimes. Increasing timber harvest (INC) via a close-to-nature forestry may offer a mitigation strategy to reduce disturbance predisposition. However, little is known about the efficiency of this strategy at the scale of forest enterprises and potential trade-offs with biodiversity and ecosystem services (BES). We applied a decision support system which accounts for disturbance predisposition and BES indicators to evaluate the effect of different harvest intensities and climate change scenarios on windthrow and bark beetle predisposition in a mountain forest enterprise in Switzerland. Simulations were carried out from 2010 to 2100 under historic climate and climate change scenarios (RCP4.5, RCP8.5). In terms of BES, biodiversity (structural and tree species diversity, deadwood amount) as well as timber production, recreation (visual attractiveness), carbon sequestration, and protection against gravitational hazards (rockfall, avalanche and landslides) were assessed. The INC strategy reduced disturbance predisposition to windthrow and bark beetles. However, the mitigation potential for bark beetle disturbance was relatively small (- 2.4%) compared to the opposite effect of climate change (+ 14% for RCP8.5). Besides, the INC strategy increased the share of broadleaved species and resulted in a synergy with recreation and timber production, and a trade-off with carbon sequestration and protection function. Our approach emphasized the disproportionally higher disturbance predisposition under the RCP8.5 climate change scenario, which may threaten currently unaffected mountain forests. Decision support systems accounting for climate change, disturbance predisposition, and BES can help coping with such complex planning situations. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02015-w.

8.
Ecotoxicol Environ Saf ; 246: 114143, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201920

RESUMO

Chemical exposure concentrations and the composition of ecological receptors (e.g., species) vary in space and time, resulting in landscape-scale (e.g. catchment) heterogeneity. Current regulatory, prospective chemical risk assessment frameworks do not directly address this heterogeneity because they assume that reasonably worst-case chemical exposure concentrations co-occur (spatially and temporally) with biological species that are the most sensitive to the chemical's toxicity. Whilst current approaches may parameterise fate models with site-specific data and aim to be protective, a more precise understanding of when and where chemical exposure and species sensitivity co-occur enables risk assessments to be better tailored and applied mitigation more efficient. We use two aquatic case studies covering different spatial and temporal resolution to explore how geo-referenced data and spatial tools might be used to account for landscape heterogeneity of chemical exposure and ecological assemblages in prospective risk assessment. Each case study followed a stepwise approach: i) estimate and establish spatial chemical exposure distributions using local environmental information and environmental fate models; ii) derive toxicity thresholds for different taxonomic groups and determine geo-referenced distributions of exposure-toxicity ratios (i.e., potential risk); iii) overlay risk data with the ecological status of biomonitoring sites to determine if relationships exist. We focus on demonstrating whether the integration of relevant data and potential approaches is feasible rather than making comprehensive and refined risk assessments of specific chemicals. The case studies indicate that geo-referenced predicted environmental concentration estimations can be achieved with available data, models and tools but establishing the distribution of species assemblages is reliant on the availability of a few sources of biomonitoring data and tools. Linking large sets of geo-referenced exposure and biomonitoring data is feasible but assessment of risk will often be limited by the availability of ecotoxicity data. The studies highlight the important influence that choices for aggregating data and for the selection of statistical metrics have on assessing and interpreting risk at different spatial scales and patterns of distribution within the landscape. Finally, we discuss approaches and development needs that could help to address environmental heterogeneity in chemical risk assessment.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Estudos Prospectivos , Medição de Risco , Monitoramento Ambiental/métodos
9.
Int J Environ Health Res ; 32(1): 1-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013546

RESUMO

Understanding the spatio-temporal characteristics of air pollutants is essential to improving air quality. One aspect is the question of whether green spaces can reduce air pollutant concentrations. However, previous studies on this issue have reported mixed results. This study analyzed the spatio-temporal characteristics of NO2, PM2.5 and O3 in Fujian Province, Southeast China in 2015. In order to reduce uncertainties in the conclusions drawn, the effects landscape metrics describing green spaces have on air pollutants have been analyzed using Pearson correlation analysis at six different spatial scales for the four seasons, considering the influence of meteorological conditions. The results show that PM2.5 and O3 are major pollutants whose relative importance varies with the seasons. Significant differences in pollutant concentrations were observed in suburban and urban areas, highlighting the importance of ensuring a reasonable spatial distribution of monitoring stations. Moreover, significant correlations between air pollutants and green space landscape patterns during the four seasons were found, revealing increased air pollutant concentrations with increasing landscape fragmentation and reduced connectivity and aggregation. This probably indicates that interconnected green spaces have the potential to improve air quality. Utilizing green space function regulations can alleviate NO2 and PM2.5 pollution effectively, but it is still difficult to reduce O3 concentrations because green spaces are likely to not only serve as sinks for O3, but can also promote O3 formation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Parques Recreativos , Material Particulado/análise , Estações do Ano
10.
Conserv Biol ; 35(6): 1871-1881, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34151469

RESUMO

Recovery of grassland birds in agricultural landscapes is a global imperative. Agricultural landscapes are complex, and the value of resource patches may vary substantially among species. The spatial extent at which landscape features affect populations (i.e., scale of effect) may also differ among species. There is a need for regional-scale conservation planning that considers landscape-scale and species-specific responses of grassland birds to environmental change. We developed a spatially explicit approach to optimizing grassland conservation in the context of species-specific landscapes and prioritization of species recovery and applied it to a conservation program in Kentucky (USA). We used a hierarchical distance-sampling model with an embedded scale of effect predictor to estimate the relationship between landscape structure and abundance of eastern meadowlarks (Sturnella magna), field sparrows (Spizella pusilla), and northern bobwhites (Colinus virginianus). We used a novel spatially explicit optimization procedure rooted in multi-attribute utility theory to design alternative conservation strategies (e.g., prioritize only northern bobwhite recovery or assign equal weight to each species' recovery). Eastern meadowlarks and field sparrows were more likely to respond to landscape-scale resource patch adjacencies than landscape-scale patch densities. Northern bobwhite responded to both landscape-scale resource patch adjacencies and densities and responded strongly to increased grassland density. Effects of landscape features on local abundance decreased as distance increased and had negligible influence at 0.8 km for eastern meadowlarks (0.7-1.2 km 95% Bayesian credibility intervals [BCI]), 2.5 km for field sparrows (1.5-5.8 km 95% BCI), and 8.4 km for bobwhite (6.4-26 km 95% BCI). Northern bobwhites were predicted to benefit greatly from future grassland conservation regardless of conservation priorities, but eastern meadowlark and field sparrow were not. Our results suggest similar species can respond differently to broad-scale conservation practices because of species-specific, distance-dependent relationships with landscape structure. Our framework is quantitative, conceptually simple, customizable, and predictive and can be used to optimize conservation in heterogeneous ecosystems while considering landscape-scale processes and explicit prioritization of species recovery.


La recuperación de las aves de pastizal en los paisajes agrícolas es una obligación mundial. Los paisajes agrícolas son complejos y el valor de los fragmentos con recursos puede variar sustancialmente entre especies. La magnitud espacial a la que las características del paisaje afectan a las poblaciones (es decir, la escala del efecto) también puede diferir entre especies. Existe la necesidad de una planeación de la conservación a escala regional que considere la escala de paisaje y las respuestas específicas de especie de aves de pastizal al cambio ambiental. Desarrollamos una estrategia espacialmente explícita para optimizar la conservación de pastizales en el contexto de los paisajes de especies específicas y la priorización de la recuperación de especies y la aplicamos a un programa de conservación en Kentucky (E.U.A.). Usamos un modelo jerárquico de muestreo a distancia con una escala integrada del efecto pronosticador para estimar la relación entre la estructura del paisaje y la abundancia de la alondra oriental de pradera (Sturnella magna), el gorrión de campo (Spizella pusilla) y la codorniz norteña (Colinus virginianus). Usamos un novedoso procedimiento de optimización espacialmente explícito basado en la teoría de utilidad multicaracterística para diseñar estrategias de conservación alternativas (p. ej.: priorizar solamente la recuperación de la codorniz norteña o asignar una importancia idéntica a la recuperación de cada especie). La alondra y el gorrión tuvieron una mayor probabilidad de responder a la proximidad de fragmentos con recursos a escala de paisaje que a la densidad de fragmentos a escala de paisaje. La codorniz respondió tanto a la proximidad de fragmentos con recursos a escala de paisaje como a la densidad y también respondió fuertemente al incremento en la densidad del pastizal. Los efectos de las características del paisaje sobre la abundancia local disminuyeron conforme incrementó la distancia, representando una influencia insignificante a los 0.8 km para la alondra (0.7-1.2 km 95% de intervalos de credibilidad bayesiana [ICB]), a los 2.5 km para el gorrión (1.5-5.8 km 95% ICB) y a los 8.4 km para la codorniz (6.4-26 km 95% ICB). Se pronosticó que la codorniz se beneficiaría enormemente con la conservación futura de los pastizales sin importar las prioridades de conservación, pero no fue el caso para la alondra y el gorrión. Nuestros resultados sugieren que especies similares pueden responder de manera diferente a las prácticas de conservación a escalas generalizadas debido a las relaciones específicas de especie y dependientes de la distancia con la estructura del paisaje. Nuestro marco de trabajo es cuantitativo, conceptualmente simple, adaptable y predictivo y puede usarse para optimizar la conservación en los ecosistemas heterogéneos a la vez que considera los procesos a escala de paisaje y la priorización explícita de la recuperación de las especies.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Animais , Teorema de Bayes , Aves
11.
J Environ Manage ; 294: 112914, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119996

RESUMO

Nonpoint source (NPS) water quality trading (WQT) has been lauded as a way to reduce water pollution while mitigating costs, but NPS WQT programs often do not account for cumulative landscape-scale impacts to hydrological and ecological processes. In this work, we parameterize the landscape-scale patterns of an emerging NPS WQT market in Virginia (n = 606 transactions) and describe potential tradeoffs and synergies. We also examine program outcomes in the context of Virginia's spatially-explicit conservation and restoration priorities, and discuss ways in which NPS WQT integrates or fails to integrate with these state-level watershed management goals. These spatial and policy analyses demonstrate novel ways to evaluate NPS WQT programs. Our results reveal how NPS WQT has influenced Virginia land management patterns in practice. Specifically, we show that this program has encouraged the transfer of water quality Best Management Practices (BMPs) from urban to rural areas. Impact sites are often far from mitigation sites, at an average of 164.6 km apart measured along the stream network and most often migrated outside the 8-digit Hydrologic Unit Code watershed boundaries. We also find opportunity for improved integration with the state-level management priorities, including that an estimated 22% of the NPS WQT mitigation site area works against state priorities (for example by converting prime farmland to forest), 9% supports state priorities, and 69% neither negates nor supports state priorities. We suggest policy and management actions that can increase the integration of NPS WQT with statewide watershed management goals, and could ultimately improve environmental returns from this fast-growing program.


Assuntos
Poluição da Água , Qualidade da Água , Monitoramento Ambiental , Hidrologia , Rios , Virginia , Poluição da Água/análise
12.
Ecol Appl ; 30(2): e02028, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670888

RESUMO

Habitat loss and fragmentation greatly affect biological diversity. Actions to counteract their negative effects include increasing the quality, amount and connectivity of seminatural habitats at the landscape scale. However, much of the scientific evidence underpinning landscape restoration comes from studies of habitat loss and fragmentation, and it is unclear whether the ecological principles derived from habitat removal investigations are applicable to habitat creation. In addition, the relative importance of local- (e.g., improving habitat quality) vs. landscape-level (e.g., increasing habitat connectivity) actions to restore species is largely unknown, partly because studying species responses over sufficiently large spatial and temporal scales is challenging. We studied small mammal responses to large-scale woodland creation spanning 150 yr, and assessed the influence of local- and landscape-level characteristics on three small mammal species of varying woodland affinity. Woodland specialists, generalists, and grassland specialists were present in woodlands across a range of ages from 10 to 160 yr, demonstrating that these species can quickly colonize newly created woodlands. However, we found evidence that woodlands become gradually better over time for some species. The responses of individual species corresponded to their habitat specificity. A grassland specialist (Microtus agrestis) was influenced only by landscape attributes; a woodland generalist (Apodemus sylvaticus) and specialist (Myodes glareolus) were primarily influenced by local habitat attributes, and partially by landscape characteristics. At the local scale, high structural heterogeneity, large amounts of deadwood, and a relatively open understory positively influenced woodland species (both generalists and specialists); livestock grazing had strong negative effects on woodland species abundance. Actions to enhance habitat quality at the patch scale focusing on these attributes would benefit these species. Woodland creation in agricultural landscapes is also likely to benefit larger mammals and birds of prey feeding on small mammals and increase ecosystem processes such as seed dispersal.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Aves , Mamíferos
13.
Ecol Appl ; 30(2): e02033, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31677313

RESUMO

Land-use change modifies the spatial structure of tropical landscapes, shaping global biodiversity patterns. Yet, it remains unknown how key ecological processes, such as seed dispersal, can be affected by changes in landscape patterns, and whether such effects differ among regions with different climate and disturbance intensity. We assessed the effect of five landscape metrics (forest cover, matrix openness, forest edge density, forest fragmentation, and interpatch distance) on the seed rain recorded in two Mexican fragmented regions (20 forest sites per region): the more deforested, defaunated, and windy Los Tuxtlas rainforest (LTX), and the better-preserved Lacandona rainforest (LAC). We quantified the proportions of dispersed tree species and their seeds, separately evaluating wind- and animal-dispersed species. Our findings support the hypothesis that forest loss is more important than fragmentation per se, negatively impacting the seed rain in both regions. As expected, landscape patterns were comparatively more important for wind-dispersed seeds in LTX, probably because of stronger wind events in this region. Specifically, proportions of wind-dispersed seeds and species decreased with increasing edge density, suggesting that forest edges prevent dispersal of wind-dispersed species, which may occur if edges create physical barriers that limit wind flow. This pattern can also be caused by source limitation in landscapes with more forest edges, as tree mortality rates usually increase at forest edges. The wind-dispersed seed rain was also positively related to matrix openness, especially in LTX, where wind flow can be favored by the dominance of treeless anthropogenic matrices. Surprisingly, the proportion of animal-dispersed seeds in LTX was positively related to matrix openness and patch isolation, suggesting that seed dispersers in more deforested regions may be forced to concentrate in isolated patches and use the available habitat more intensively. Yet, as expected, patch isolation limited wind-dispersed seeds in LAC. Therefore, dispersal (and potentially regeneration) of wind-dispersed trees is favored in regions exposed to stronger wind events, especially in landscapes dominated by regularly shaped patches surrounded by open areas. Conversely, animal-dispersed seeds are primarily favored by increasing forest cover. Preventing forest loss is therefore critical to promote animal seed dispersal and forest recovery in human-modified rainforests.


Assuntos
Dispersão de Sementes , Animais , Ecossistema , Florestas , México , Sementes , Árvores
14.
Ecol Lett ; 22(4): 634-644, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714671

RESUMO

Predicting population colonisations requires understanding how spatio-temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower-density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual-based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density-dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade-offs differ across life stages.


Assuntos
Migração Animal , Ecossistema , Animais , Densidade Demográfica , Dinâmica Populacional
15.
Ecol Appl ; 29(1): e01818, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462874

RESUMO

While organic farming practices, which are often promoted as models of ecological intensification, generally enhance biodiversity, their effects on the delivery of ecosystem services, such as biological pest control, are still unknown. Here, using a multi-scale hierarchical design in southwestern France, we examined the effects of organic farming and seminatural habitats at the local and landscape scales on biological control services of three pests, including weeds and insects, in 42 vineyards. Organic farming at the local and landscape scales was beneficial to the mean and temporal stability of biological control services, while the proportion of seminatural habitats in the landscape reduced the level of biological pest control potential. The effects of organic farming and seminatural habitats across spatial scales varied with the type of prey considered and with time. Egg moth removal rates were higher in fields under organic management compared to conventional management while weed seed removal rates increased with the proportion of organic farming in the landscape. Larval removal rates as well as seed removal rates were always more stable within time in organic fields than in conventional fields. Moreover, independently of farming system type, local variables describing the agricultural management intensity, such as pesticide use or crop productivity, were also found to be important variables explaining levels of biological control services. Pesticide use tended to reduce biological control potential, while crop productivity was associated with contrasting biological control responses depending on the pest type. Our study demonstrates the need to target multiple spatial scales and to consider farming practices, as well as the proportion of seminatural habitats, to design functional landscapes that optimize biological pest control services.


Assuntos
Agricultura Orgânica , Controle Biológico de Vetores , Ecossistema , Fazendas , França
16.
Proc Natl Acad Sci U S A ; 113(20): 5640-5, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140631

RESUMO

Sudden oak death, caused by Phytophthora ramorum, has killed millions of oak and tanoak in California since its first detection in 1995. Despite some localized small-scale management, there has been no large-scale attempt to slow the spread of the pathogen in California. Here we use a stochastic spatially explicit model parameterized using data on the spread of P. ramorum to investigate whether and how the epidemic can be controlled. We find that slowing the spread of P. ramorum is now not possible, and has been impossible for a number of years. However, despite extensive cryptic (i.e., presymptomatic) infection and frequent long-range transmission, effective exclusion of the pathogen from large parts of the state could, in principle, have been possible were it to have been started by 2002. This is the approximate date by which sufficient knowledge of P. ramorum epidemiology had accumulated for large-scale management to be realistic. The necessary expenditure would have been very large, but could have been greatly reduced by optimizing the radius within which infected sites are treated and careful selection of sites to treat. In particular, we find that a dynamic strategy treating sites on the epidemic wave front leads to optimal performance. We also find that "front loading" the budget, that is, treating very heavily at the start of the management program, would greatly improve control. Our work introduces a framework for quantifying the likelihood of success and risks of failure of management that can be applied to invading pests and pathogens threatening forests worldwide.


Assuntos
Florestas , Phytophthora , Doenças das Plantas/terapia , Quercus/parasitologia , California , Epidemias , Doenças das Plantas/prevenção & controle , Risco , Fatores de Tempo
17.
J Environ Manage ; 230: 392-404, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30296677

RESUMO

There is increasing recognition that ecosystems and their services need to be managed at landscape scale and greater. The development of landscape-scale conservation strategies need to incorporate information from multiple sources. In this study, we combine various research tools to link landscape patterns with production units and systems in the Usumacinta River Basin, and inform the discussion of key questions around decision-making related to conservation action and policy in Southern Mexico. A typology based on policy-relevant farmer characteristics (land tenure, farm size, source of income, farming system) differentiated between farmers (traditional vs. cattle ranching) with different motivations that determine how management affects landscape configuration. Five main types of traditional farming systems were identified that combine different forms of land use and vary in their degree of land intensification. Major fragmentation and decrease in connectivity coincided spatially with floodplains dominated by large-scale commercial farms that specialize in livestock production. Traditional practices within large units with low-sloped high quality land were also seen to be intensive; however the presence of trees was notable throughout these units. Policies that promote livestock farming are among the principle causes motivating deforestation. Land intensification by traditional farmers decreased as the landscape became increasingly rugged. Traditional farmers are the focus of initiatives developed by the Biological Corridor project which seeks to increase forest cover and landscape connectivity. These initiatives have shown high levels of rural participation (10,010 farmers benefited from 27,778 projects involving 95,374 ha of land) and acceptance (producers carried out more than one project and several types of projects during the first eight years of work). Strong action is still required to take on the segment of large-scale ranchers. Changes in the structure of land tenure over the past decade are highlighted that could have a profound impact on conservation policies and programs.


Assuntos
Agricultura , Rios , Agricultura/métodos , Animais , Bovinos , Conservação dos Recursos Naturais , Ecossistema , Fazendeiros , Fazendas , Renda , México , Árvores
18.
Wetlands (Wilmington) ; 39(1): 127-137, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33424080

RESUMO

Wetlands can be significant sinks for Nr, via denitrification. There is a lack of understanding about factors controlling denitrification. Research suggests that hydrology, geomorphology, and nitrogen loading are dominant controls. We compared site-scale characteristics with denitrification enzyme activity (DEA) in wetlands along gradients of drainage basin land use to explore the relative importance of landscape and site-scale factors for determining denitrification potential. DEA rates ranged between 0.01-1.69 (µg N gdw-1 hr-1), with most sites falling at the lower end. Sites with higher DEA rates had higher percentages of soil carbon and nitrogen, concentrations of soil extractable NO3 and percent loss on ignition. Sites with upstream agricultural activity had higher DEA rates than more natural sites, but there existed a wide range of DEA rates along both agricultural and urban land gradients. When multiple site and landscape-scale explanatory factors were compared to DEA rates, two site and one landscape scale characteristic (Soil NO3, Soil Percent N, and Percent Agriculture) had significant (p<0.001, cum. r2 = 0.77) correlations with DEA rates. Our results suggest that DEA is controlled mainly by local-scale site characteristics with more work needed to determine the interdependencies and relative importance among these and potentially related landscape-scale factors.

19.
Ecology ; 99(1): 136-147, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29030983

RESUMO

The geographically extensive phenomenon of woody plant encroachment into grass-dominated ecosystems has strong potential to influence biogeochemical cycles at ecosystem to global scales. Previous research has focused almost exclusively on quantifying pool sizes and flux rates of soil carbon and nitrogen (N), while few studies have examined the impact of woody encroachment on soil phosphorus (P) cycling. Moreover, little is known regarding the impact of woody encroachment on the depth distribution of soil total P at the landscape scale. We quantified patterns of spatial heterogeneity in soil total P along a soil profile by taking spatially explicit soil cores to a depth of 120 cm across a subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2 -fixer) and other tree/shrub species during the past century. Soil total P increased significantly following woody encroachment throughout the entire 120-cm soil profile. Large groves (>100 m2 ) and small discrete clusters (<100 m2 ) accumulated 53 and 10 g P/m2 more soil P, respectively, compared to grasslands. This P accumulation in soils beneath woody patches is most likely attributable to P uplift by roots located deep in the soil profile (>120 cm) and transfer to upper portions of the profile via litterfall and root turnover. Woody encroachment also altered patterns of spatial heterogeneity in soil total P in the horizontal plane, with highest values at the centers of woody patches, decreasing toward the edges, and reaching lowest values in the surrounding grassland matrix. These spatial patterns were evident throughout the upper 1.2 m of the soil profile, albeit at reduced magnitude deeper in the soil profile. Spatial generalized least squares models indicated that fine root biomass explained a significant proportion of the variation in soil total P both across the landscape and throughout the profile. Our findings suggest that transfer of P from deeper soil layers enlarges the P pool in upper soil layers where it is more actively cycled may be a potential strategy for encroaching woody species to satisfy their P demands.


Assuntos
Fósforo , Solo , Ecossistema , Árvores , Madeira
20.
Glob Chang Biol ; 24(5): 1992-2007, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29323781

RESUMO

Soil carbon, nitrogen, and phosphorus cycles are strongly interlinked and controlled through biological processes, and the phosphorus cycle is further controlled through geochemical processes. In dryland ecosystems, woody encroachment often modifies soil carbon, nitrogen, and phosphorus stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations following woody encroachment by taking spatially explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by Prosopis glandulosa (an N2 fixer) and other woody species during the past century in southern Texas, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns throughout the soil profile following woody encroachment, while TP increased slower than SOC and TN in topmost surface soils (0-5 cm) but faster in subsurface soils (15-120 cm). Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in subsurface soils. The encroachment of woody species dominated by N2 -fixing trees into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the soil profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth. Our findings suggest that efforts to incorporate effects of land cover changes into coupled climate-biogeochemical models should attempt to represent C-N-P imbalances that may arise following vegetation change.


Assuntos
Carbono/química , Nitrogênio/química , Fósforo/química , Prosopis/fisiologia , Solo/química , Clima , Ecossistema , Texas , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA