Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2305287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653592

RESUMO

Poor water stability and single luminous color are the major drawbacks of the most phosphors reported. Therefore, it is important to realize multicolor luminescence in a phosphor with single host and single activator as well as moisture resistance. LaF3 :Pr3+ @SiO2 yolk-shell nanospheres are facilely obtained by a designing new technology of a simple and cost-effective electrospray ionization combined with a dicrucible fluorating technique without using protective gas. In addition, tunable photoluminescence, especially white-light emission, is successfully obtained in LaF3 :Pr3+ @SiO2 yolk-shell nanospheres by adjusting Pr3+ ion concentrations, and the luminescence mechanism of Pr3+ ion is advanced. Compared with the counterpart LaF3 :Pr3+ nanospheres, the water stability of LaF3 :Pr3+ @SiO2 yolk-shell nanospheres is improved by 15% after immersion in water for 72 h, and the fluorescence intensity can be maintained at 86% of the initial intensity. Furthermore, by treating the yolk-shell nanospheres with hydrofluoric acid, it is not only demonstrated that the shell-layer is SiO2 but also core-LaF3 :Pr3+ nanospheres are obtained. Particularly, only fluorination procedure among the halogenation can produce such special yolk-shell nanospheres, the formation mechanism of yolk-shell nanospheres is proposed detailedly based on the sound experiments and a corresponding new technology is built. These findings broaden practical applications of LaF3 :Pr3+ @SiO2 yolk-shell nanospheres.

2.
Small ; 20(28): e2308781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308349

RESUMO

A Lanthanum ion (La3+) incorporation strategy is implemented to modify Ba2Bi2O6-based double perovskite photoelectrodes. X-ray diffraction (XRD) characterization shows that highly crystalline Ba2La0.4Bi1.6O6 double perovskites with the space group I2/m are successfully prepared. UV-vis absorption spectra and the Tauc-plot reveal an optical band gap Eg ≈1.57 ± 0.01 eV. A thickness dependence of the photoelectrodes photoelectrochemical (PEC) performance shows that the submicron (≈1 µm) 4-times spin-coated thin film photoelectrode displays strong p-type conductivity, which delivers an encouraging photocurrent density of 0.88 mA cm-2 at 0.25 VRHE under AM 1.5G illumination. 10-times coated and 20-times coated medium thick (125.8-197 µm) photoelectrodes that exhibit moderate p-type conductivity, show further enhanced photocurrent densities of 1.5 mA cm-2 at 0 VRHE. In contrast, charge recombination centers existing in a standard thick pellet (≈500 µm) Ba2La0.4Bi1.6O6 photoelectrode can quench photo-generated charge carriers and greatly undermine PEC activities. The approach to doping at the Bi(III) sites contrasts with earlier efforts that focus on doping at the Bi(V) sites and thus paves the way for further tailoring a family of novel promising photocathode materials for efficient solar-water conversion devices.

3.
J Biol Inorg Chem ; 29(1): 101-112, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38148422

RESUMO

The aim of this study was to investigate the effect and possible underlying mechanism of La2(CO3)3 deposition on GI mucosal inflammation. Our results showed that La2(CO3)3 can dissolve in artificial gastric fluids and form lanthanum phosphate (LaPO4) precipitates with an average size of about 1 µm. To mimic the intestinal mucosa and epithelial barrier, we established a Caco-2/THP-1 macrophage coculture model and a Caco-2 monoculture model, respectively. Our findings demonstrated that the medium of THP-1 macrophages stimulated by LaPO4 particles can damage the Caco-2 monolayer integrity in the coculture model, while the particles themselves had no direct impact on the Caco-2 monolayer integrity in the monoculture model. We measured values of trans-epithelial electrical resistance and detected images using a laser scanning confocal microscope. These results indicate that continuous stimulation of LaPO4 particles on macrophages can lead to a disruption of intestinal epithelium integrity. In addition, LaPO4 particles could stimulate THP-1 macrophages to secrete both IL-1ß and IL-8. Although LaPO4 particles can also promote Caco-2 cells to secrete IL-8, the secretion was much lower than that produced by THP-1 macrophages. In summary, the deposition of La2(CO3)3 has been shown to activate macrophages and induce damage to intestinal epithelial cells, which may exacerbate inflammation in patients with chronic kidney disease. Therefore, patients taking lanthanum carbonate, especially those with gastrointestinal mucosal inflammation, should be mindful of the potential for drug deposition in the GI system.


Assuntos
Lantânio , Insuficiência Renal Crônica , Humanos , Lantânio/farmacologia , Células CACO-2 , Técnicas de Cocultura , Interleucina-8/farmacologia , Macrófagos , Inflamação/induzido quimicamente
4.
Environ Res ; 242: 117817, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043892

RESUMO

In this study, lanthanum carbonate (LC) was selected as a capping agent to examine its effectiveness in immobilizing sediment internal phosphorus (P), arsenic (As) and tungsten (W). With a 180-day incubation experiment, it was determined that LC capping efficiently reduced the concentrations of soluble reactive P (SRP), soluble As and soluble W in pore water, with the highest reduction rate of 83.39%, 56.21% and 68.52%, respectively. The primary mechanisms involved in the adsorption of P, As and W by LC were precipitation reactions and ligand exchange. Additionally, P, As and W were immobilized by LC capping through the transformation of fractions from mobile and less stable forms to more stable forms. Furthermore, LC capping led to an increase in the Eh value, which promoted the oxidation of soluble Fe (Ⅱ) and soluble Mn. The significantly positive correlation and synchronized variations observed between SRP, soluble As, soluble W, and soluble Fe (II) indicated that the effects of LC on Fe redox played a crucial role in immobilizing sediment internal P, As and W. However, the oxidation of Mn, promoted by LC, played a more significant role in immobilizing sediment internal As than P and W. These effects resulted in LC capping achieving the highest reduction of SRP, soluble As and soluble W flux at 145.22, 22.19, and 0.58 µg m-2d-1. It is of note that LC capping did not lead to an elevated release hazard of Co, Ni, Cu, and Pb, barring Cd. Besides, LC capping did not modify the entire microbial communities in the sediment, but altered the proportional representation of specific microorganisms. Generally, LC has potential as a capping agent capable of simultaneously immobilizing sediment internal P, As and W.


Assuntos
Arsênio , Lantânio , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Tungstênio , Fósforo , Sedimentos Geológicos , Lagos
5.
Regul Toxicol Pharmacol ; 151: 105670, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936798

RESUMO

Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 µg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 µg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.


Assuntos
Aberrações Cromossômicas , Ensaio Cometa , Dano ao DNA , Lantânio , Testes para Micronúcleos , Testes de Mutagenicidade , Espermatozoides , Lantânio/toxicidade , Animais , Masculino , Camundongos , Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos dos fármacos , Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Espermatozoides/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Dose-Resposta a Droga , Camundongos Endogâmicos ICR , Linhagem Celular
6.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37908164

RESUMO

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Assuntos
Adipogenia , Lantânio , Camundongos , Animais , Lantânio/toxicidade , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt , beta Catenina/metabolismo , Diferenciação Celular
7.
Ecotoxicol Environ Saf ; 269: 115857, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150844

RESUMO

The enhanced effects of formaldehyde biodegradation in a biofilm packing tower are investigated in this study. Three experimental groups were established: a blank control group, a biochar addition group, and a lanthanum addition group. The inlet gas flow rate, the inlet gas concentration, and the structural succession characteristics of the microbial community in the tower were investigated by regular sampling. The intracellular metabolites and key enzymes of the dominant functional bacteria, Pseudomonas P1 and Methylobacterium Q1, in the tower were analyzed. The results indicated that with the biochar addition, the formaldehyde purification efficiency increased significantly from 91.67-94.67 % to 94.12 96.85 %, and the bio-elimination capacity increased with an increase in the inlet gas flow rate from 2.314 to 13.988 mg L-1h-1 to 2.697-15.051 mg L-1h-1. With the addition of lanthanum, the purification efficiency increased significantly from 90.80-93.98 % to 94.36-96.78 %, and the bio-elimination capacity increased with an increase in the inlet gas concentration from 1.099-11.284 mg L-1h-1 to 1.266-11.961 mg L-1h-1. The microbial community structure in the tower changed with system operation, and the formaldehyde degrading functional bacteria formed the dominant bacteria. It was verified that P1 and Q1 metabolized high concentrations of formaldehyde by the serine cycle and the ribulose monophosphate (RuMP) cycle.


Assuntos
Carvão Vegetal , Formaldeído , Lantânio , Lantânio/metabolismo , Biodegradação Ambiental , Formaldeído/metabolismo , Bactérias/metabolismo
8.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215666

RESUMO

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Assuntos
Lantânio , Osteopontina , Humanos , Osteopontina/metabolismo , Lantânio/toxicidade , Lantânio/metabolismo , Rim , Túbulos Renais/metabolismo , Biomarcadores/metabolismo
9.
Ecotoxicol Environ Saf ; 281: 116576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878562

RESUMO

The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 µM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 µM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Lantânio , Estômatos de Plantas , Transpiração Vegetal , Lantânio/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos
10.
Toxicol Ind Health ; 40(1-2): 69-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38095284

RESUMO

Trivalent lanthanide ions are known for their ability to interact with calcium-binding sites in various proteins. There is a need to assess the bioavailability of lanthanides and other heavy metals introduced into the body as components of implants or as contrast agents. This study aimed to develop a method to address bioavailability and/or presence of trivalent lanthanide ions by examining electrophoretic mobility in an agarose gel of a plasmid harboring the human metallothionein-II gene (hMT-II). Mobility of the plasmid was specifically altered by a monoclonal antibody raised against the zinc-binding transcription factor that controls the activity of the hMT-II gene. This study showed that the plasmid acquired a lanthanide-specific mobility pattern that allowed the presence of lanthanide ions to be readily determined in a 0.8% agarose gel. These findings suggest that this plasmid/monoclonal antibody combination under selected conditions may be useful in industrial, environmental, and biomedical settings to identify, separate, or capture lanthanide ions in complex mixtures that contain an array of metal ions.


Assuntos
Elementos da Série dos Lantanídeos , Metalotioneína , Metais Pesados , Humanos , Anticorpos Monoclonais/genética , Cátions , Eletroforese em Gel de Ágar , Lantânio , Metalotioneína/genética , Plasmídeos/genética , Sefarose
11.
Nano Lett ; 23(24): 11916-11924, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38055678

RESUMO

Developing tunable luminescent materials for high throughput information storage is highly desired following the explosive growth of global data. Although considerable success has been achieved, achieving programmable information encryption remains challenging due to current signal crosstalk problems. Here, we developed long-lived room-temperature phosphorescent organogels enabled by lanthanum-coordinated hydrogen-bonded organic framework nanofibers for time-resolved information programming. Via modulating coassembled lanthanum concentration and Förster resonance energy transfer efficiency, the lifetimes are prolonged and facilely manipulated (20-644 ms), realizing encoding space enlargement and multichannel data outputs. The aggregated strong interfacial supramolecular bonding endows organogels with excellent mechanical toughness (36.16 MJ m-2) and self-healing properties (95.7%), synergistically achieving photostability (97.6% lifetime retention in 10000 fatigue cycles) via suppressing nonradiative decays. This work presents a lifetime-gated information programmable strategy via lanthanum-coordination regulation that promisingly breaks through limitations of current responsive luminescent materials, opening unprecedented avenues for high-level information encryption and protection.

12.
J Environ Manage ; 359: 120938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669888

RESUMO

The effective purification of phosphate-containing wastewater is considered as increasingly important. In this study, a highly effective LC-CNT film was developed for efficient phosphate removal. Kinetic results showed that the adsorbent exhibited an improved mass transfer efficiency and a fast adsorption rate during adsorption (reaching 80% and 100% equilibrium adsorption capacity within 175 and 270 min, respectively). Kinetic model analysis suggested that the adsorption was a combined chemical physical process. Isotherm study revealed that the LC-CNT film showed a superior adsorption capacity (178.6 mg/g, estimated from the Langmuir model) with multiple adsorption mechanisms. pH study suggested that surface complexation and ligand exchange played important roles during adsorption, and the adsorbent worked well within the pH range of 3-7 with little La leakage. The ionic strength and competing anions showed little influence on the adsorbent effectiveness except for the carbonate and sulfate ions. The characterization and mechanism study revealed that the phosphate adsorption of the LC-CNT film was controlled by inner-sphere complexation, outer-sphere complexation and surface precipitation. The LC-CNT film also showed excellent regenerability and stability in cycling runs, further demonstrating its potential in industrial applications.


Assuntos
Lantânio , Nanotubos de Carbono , Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Lantânio/química , Adsorção , Nanotubos de Carbono/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Concentração Osmolar
13.
J Environ Manage ; 353: 120149, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278114

RESUMO

The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Fosfatos/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Lantânio/química , Cinética
14.
J Environ Manage ; 356: 120502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479281

RESUMO

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Assuntos
Lotus , Poluentes Químicos da Água , Fósforo , Águas Residuárias , Fosfatos/química , Carvão Vegetal , Adsorção , Lantânio/química , Poluentes Químicos da Água/química , Sementes , Cinética
15.
J Environ Manage ; 353: 120150, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278118

RESUMO

Lanthanum-modified bentonite (LMB) and calcium peroxide (CP) are known for their effective removal phosphorus (P) capacities. The present study aims to investigate the effects of the combined use of LMB and CP(LMB + CP)on the sediment P, dissolved organic matter (DOM) and iron (Fe) concentrations through a 90-day incubation experiment. The combined treatment showed strong removal effects on sediment P and DOM. Indeed, the SRP and DOM concentrations in the 0-10 cm sediment layer decreased following the combined application of LMB and CP by 40.67 and 28.95%, respectively, compared to those of the control group (CK). In contrast, the HCl-P in the 0-5 cm sediment layer increased following the combined treatment by 13.28%. In addition, compared with the single application of LMB, the LMB + CP treatment significantly reduced the soluble Fe (Ⅱ) in the sediment pore water and promoted the oxidation of Fe. Therefore, LMB + CP can enhance the removal of internal P from sediments. The DOM removal and Fe oxidation in sediment pore waters are beneficial for enhancing the adsorption of P by LMB. On the other hand, the single and combined applications of LMB and CP increased the richness of the sediment microbial communities while exhibiting slight effects on their diversity. According to the results of this study, the combined use of LMB and oxidizing materials represents a novel method for treating lakes with high internal phosphorus and DOM loads in sediments.


Assuntos
Peróxidos , Fósforo , Poluentes Químicos da Água , Bentonita , Lantânio , Lagos , Poluentes Químicos da Água/análise , Matéria Orgânica Dissolvida , Sedimentos Geológicos
16.
J Environ Manage ; 352: 120053, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211429

RESUMO

The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.


Assuntos
Fósforo , Poluentes Químicos da Água , Bentonita , Lantânio , Poluentes Químicos da Água/análise , Lagos , Água
17.
Molecules ; 29(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999142

RESUMO

Ba1-xCexMnO3 (BM-Cex) and Ba1-xLaxMn0.7Cu0.3O3 (BMC-Lax) perovskite-type mixed oxides were synthesized using the sol-gel method adapted for aqueous media with different values of x (0, 0.1, 0.3, 0.6) to estimate the effect of the degree of the partial substitution of Ba by Ce or La on the structure and properties that are relevant for their use as catalysts for gasoline direct injection (GDI) soot oxidation. The samples were deeply characterized by ICP-OES, XRD, XPS, N2 adsorption, H2-TPR, and O2-TPD, and their potential as catalysts for soot oxidation has been analyzed in various scenarios that replicate the exhaust conditions of a GDI engine. By comparing the catalytic performance for soot oxidation of the two tested series (BM-Cex and BMC-Lax) and in the two conditions used (100% He and 1% O2 in He), it could be concluded that (i) in the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst, as copper is also able to catalyze the soot oxidation; and (ii) if oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most-active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1. Thus, it seems that the addition of an amount of Ce or La higher than that corresponding to x = 0.1 in Ba1-xCexMnO3 and Ba1-xLaxCu0.3Mn0.7O3 does not allow us to improve the catalytic performance of BM-Ce0.1 and BMC-La0.1 for soot oxidation in the tested conditions.

18.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276610

RESUMO

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

19.
Small ; 19(46): e2303862, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452406

RESUMO

In recent years, many metal oxides have been rigorously studied to be employed as solid electrolytes for resistive switching (RS) devices. Among these solid electrolytes, lanthanum oxide (La2 O3 ) is comparatively less explored for RS applications. Given this, the present work focuses on the electrodeposition of La2 O3 switching layers and the investigation of their RS properties for memory and neuromorphic computing applications. Initially, the electrodeposited La2 O3 switching layers are thoroughly characterized by various analytical techniques. The electrochemical impedance spectroscopy (EIS) and Mott-Schottky techniques are probed to understand the in situ electrodeposition, RS mechanism, and n-type semiconducting nature of the fabricated La2 O3 switching layers. All the fabricated devices exhibit bipolar RS characteristics with excellent endurance and stable retention. Moreover, the device mimics the various bio-synaptic properties such as potentiation-depression, excitatory post-synaptic currents, and paired-pulse facilitation. It is demonstrated that the fabricated devices are non-ideal memristors based on double-valued charge-flux characteristics. The switching variation of the device is studied using the Weibull distribution technique and modeled and predicted by the time series analysis technique. Based on electrical and EIS results, a possible filamentary-based RS mechanism is suggested. The present results assert that La2 O3 is a promising solid electrolyte for memory and brain-inspired applications.

20.
Chemistry ; 29(25): e202300021, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748928

RESUMO

Apatite-type lanthanum silicate (LSO) electrolyte is one of the most promising candidates for developing intermediate-temperature solid oxide electrolysis cells and solid oxide full cells (IT-SOECs and SOFCs) due to its stability and low activation energy. However, the LSO electrolyte still suffers from unsatisfied ionic conductivity and low relative density. Herein, a new co-doped method is reported to prepare highly purified polycrystalline powders of Mg-Mo co-doped LSO (Mg/Mo-LSO) electrolytes with high excellent densification properties and improved ionic conductivity. Introducing the Mo6+ and Mg2+ ions into the LSO structure can increase the number of interstitial oxide ions and improve the degree of densification at lower sintering temperatures, more importantly, expand the migration channel of oxide ions to enhance the ionic conductivity. As a result, the relative density of the fabricated Mo/Mg-LSO electrolytes pellets could achieve more than 98 % of the theoretical density after sintering at 1500 °C for 4 h with a grain size of about 1-3 µm and the EIS results showed the ionic conductivity increased from 0.782 mS ⋅ cm-1 for the pristine LSO to 33.94 mS ⋅ cm-1 for the doped sample La9.5 Si5.45 Mg0.3 Mo0.25 O26+δ at 800 °C. In addition, the effect of different Mo6+ doping contents was investigated systematically, in which La9.5 Si5.45 Mg0.3 Mo0.25 O26+δ possessed the highest ionic conductivity and relative density. The proposed Mo/Mg co-doped method in this work is one step forward in developing apatite-structured electrolytes offering excellent potential to address the common issues associated with the fabrication of dense, highly conductive, and thermochemically stable electrolytes for solid oxide electrolysers and fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA