Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 260: 119585, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029730

RESUMO

In this study, the phytochemical profile and silver nanoparticle (AgNPs)-synthesizing ability of Pittosporum undulatum methanol extract were investigated. Furthermore, biological applications of the AgNPs, such as antibacterial effect (against Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis, and Escherichia coli), mosquito larvicidal effect (against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti), and cytotoxicity (against fibroblast cell line L929) were evaluated using in vitro experiments. The phytochemical analysis revealed that the methanol extract contained cardiac glycosides, terpenoids, saponins, alkaloids, flavonoids, glycosides, coumarins, phenolics, and tannins. Furthermore, standard characterization techniques such as UV-Vis spectrometry, SEM, TEM, FTIR, and XRD confirmed that the methanol extract of P. undulatum effectively synthesized the AgNPs. The synthesized AgNPs had a spherical shape and size of 20-200 nm. The bactericidal analysis revealed that the AgNPs have dose-dependent antibacterial activity. The MTT assay showed that the AgNPs were bio-compatible up to a dosage of 250 µg mL-1 in the normal fibroblast cell line L929. Furthermore, the LC50 values for AgNPs against larvae of An. stephensi, Cx. quinquefasciatus, and Ae. aegypti were 0.4, 4.7, and 1.2 ppm, respectively. Field trials demonstrated that the larvicidal effect was enhanced within 24-72 h, and the rate of reduction increased over time. Thus, our findings provide an ideal sustainable AgNP bio-pesticide to combat filarial, dengue, and malaria vectors.

2.
Exp Parasitol ; 261: 108766, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677581

RESUMO

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Assuntos
Aedes , Antioxidantes , Culex , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mosquitos Vetores , Extratos Vegetais , Psidium , Animais , Psidium/química , Aedes/efeitos dos fármacos , Aedes/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/enzimologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Filariose Linfática/prevenção & controle , Inseticidas/farmacologia , Catalase/metabolismo , Folhas de Planta/química , Superóxido Dismutase/metabolismo , Controle de Mosquitos , Dengue/prevenção & controle , Dengue/transmissão , Bioensaio , Glutationa Peroxidase/metabolismo , Insetos Vetores/efeitos dos fármacos
3.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135245

RESUMO

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Assuntos
Aedes , Inseticidas , Selênio , Xenorhabdus , Febre Amarela , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selênio/análise , Selênio/farmacologia
4.
Pestic Biochem Physiol ; 203: 105965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084763

RESUMO

Herein, we focused on the larvicidal effects and potential mechanisms of 5-ethenyl-2,2'-bithiophene (5 EB), a compound isolated from Echinops ritro L. on Aedes aegypti larvae. Our results show that 5 EB exhibits pronounced larvicidal activity against A. aegypti larvae, with an LC50 = 0.24 mg/L, considerably lesser than that of the traditional insecticide, rotenone. Observations using fluorescence microscopy, electron microscopy, and imaging flow cytometry demonstrated that 5 EB targets the hemocytes of larvae, leading to the disruption of their intracellular membrane systems. This disruption leads to considerable damage to the cellular structure and function, leading to the death of test subjects. Note that additional investigation into the molecular mechanism of 5 EB's action was conducted using transcriptomic analysis. Both GO and KEGG enrichment analyses reported that the differentially expressed genes were predominantly associated with membranes, lysosomes, and catalytic activities. To summarize, this study provides new options for developing new, environmentally friendly, plant-based larvicides for mosquito control.


Assuntos
Aedes , Inseticidas , Larva , Animais , Aedes/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Echinops (Planta)/química , Tiofenos/farmacologia , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Chem Biodivers ; 21(4): e202301774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386290

RESUMO

This study is primarily focused on the synthesis of silver and copper oxide nanoparticles utilizing the extract of Ipomoea staphylina plant and their larvicidal activity against specific larvae. Notably, Anopheles stephensi and Aedes aegypti are significant disease vectors responsible for transmitting diseases such as malaria, dengue fever, Zika virus, and chikungunya (Anopheles stephensi), and dengue and Zika (Aedes aegypti). These mosquitoes have a substantial impact on urban areas, influencing disease transmission dynamics. In an effort to control these larvae, we have pursued the synthesis of a herbal-based nanomedicine derived from I. staphylina, a valuable herb in traditional medicine. Our successful synthesis of silver and CuO nanoparticles followed environmentally sustainable green chemistry methodologies. The I. staphylina plant extract played a dual role as a reducing agent and dopant, aligning with principles of sustainability. We employed X-ray diffraction (XRD) analysis to validate the nanoparticle structure and size, while field-emission scanning electron microscopy (FE-SEM) revealed well-defined nanostructures. Elemental composition was determined through energy-dispersive X-ray (EDX) analysis, and UV-visible spectroscopy provided insights into the bandgap energy (3.15 eV for silver, 1.2 eV for CuO nanoparticles). These nanoparticles exhibited robust larvicidal activity, with CuO nanoparticles surpassing silver nanoparticles in terms of LC50 and LC90 values. Moreover, the developmental toxicity of CuO and Ag NPs was evaluated in zebrafish embryos as part of non-target eco-toxicological studies conducted in a standard laboratory environment. These findings underscore the potential utility of these nanoparticles as highly effective and environmentally friendly natural pesticides, offering cost-effectiveness and ecological benefits.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Nanopartículas Metálicas , Zika virus , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Larva , Cobre/farmacologia , Peixe-Zebra , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química , Óxidos
6.
Chem Biodivers ; 21(2): e202301560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38251927

RESUMO

Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5 ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.


Assuntos
Culex , Compostos Heterocíclicos , Hidrazinas , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Compostos Heterocíclicos/farmacologia , Extratos Vegetais/química
7.
Phytochem Anal ; 35(3): 507-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38035714

RESUMO

INTRODUCTION: Pomegranate (Punica granatum L.) peels are rich in various bioactive compounds. Characterization of these compounds is crucial for the utilization of peel waste in industrial processing. OBJECTIVE: The study aimed (1) to establish and compare the metabolic profiles of the peel of seven pomegranate cultivars and (2) to identify bioactive compounds contributing to the larvicidal activity against the third instar larvae of Culex pipiens. MATERIALS AND METHODS: UPLC-ESI-MS/MS was utilized to analyze peel methanol extracts of different pomegranate cultivars. The larvicidal activity was determined by calculating the larval mortality among the third instar larvae of C. pipiens. Multivariate data analysis was conducted to identify the metabolites that exhibited a larvicidal effect. RESULTS: A total of 24 metabolites, including hydrolyzable tannins, flavonoids, and alkaloids, were tentatively identified in both negative and positive ionization modes. The extract of cultivar 'Black' exhibited the most potent larvicidal effect with LC50 values of 185.15, 156.84, and 138.12 ppm/mL after 24, 48, and 72 h of treatment, respectively. By applying chemometric techniques, the larvicidal activity could be directly correlated to the bioactive compounds punicalagin, quercetin-O-rhamnoside, quercetin-O-pentoside, and galloyl-HHDP-glucose. CONCLUSION: The present study implemented UPLC-ESI-MS/MS and chemometric techniques as potential tools for metabolomics analysis and differentiation between peels of different pomegranate cultivars. In addition, cultivar 'Black' extract could be a promising natural insecticide against mosquitoes since it is rich in bioactive compounds with larvicidal activity.


Assuntos
Culex , Extratos Vegetais , Punica granatum , Animais , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Quercetina , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Larva
8.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675598

RESUMO

Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), ß-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.


Assuntos
Antioxidantes , Commiphora , Cromatografia Gasosa-Espectrometria de Massas , Larva , Extratos Vegetais , Resinas Vegetais , Commiphora/química , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa , Resinas Vegetais/química , Larva/efeitos dos fármacos , Células Hep G2 , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Aedes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
9.
J Biochem Mol Toxicol ; 37(8): e23375, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37129082

RESUMO

Schiff bases (imines or azomethines) are versatile ligands synthesized from the condensation of amino compounds with active carbonyl groups and used for many pharmaceutical and medicinal applications. In our study, we aimed to determine the cytotoxic, antifungal and larvicidal activities of biologically potent bis-sulfonamide Schiff base derivatives that were re-synthesized by us. For this aim, 16 compounds were re-synthesized and tested for their cytotoxic, antifungal and larvicidal properties. Among this series, compounds A1B2, A1B4, A4B2, A4B3, and A4B4 were shown to have cytotoxic activity against tested cancer lung cell line (A549). The most potent antifungal activity was observed in compounds A2B1 and A2B2 against all fungi. A1B1 showed the strongest larvicidal effect at all concentrations at the 72nd h (100% mortality). These obtained results demonstrate that these type of bis-substituted compounds might be used as biologically potent pharmacophores against different types of diseases.


Assuntos
Antifúngicos , Bases de Schiff , Antifúngicos/farmacologia , Bases de Schiff/farmacologia , Fungos , Sulfanilamida , Linhagem Celular , Testes de Sensibilidade Microbiana
10.
Med Vet Entomol ; 37(3): 483-490, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36799890

RESUMO

The development of insecticide resistance is a serious consequence of the widespread applications of synthetic insecticides. Recent studies have provided alternatives to currently available insecticides. Here, novel cationic gemini surfactants were synthesized to assess their insecticidal activities using laboratory and field strains larvae of Culex pipiens Linnaeus (Diptera: Culicidae). The efficacy of these surfactants was compared to that of clove oil and spinosad. The two surfactants G1 and G2 showed good insecticidal activities in laboratory strain with LC50 0.013 and 0.054 ppm, respectively, relative to spinosad with LC50 0.027 ppm, 48 h posttreatment. Although spinosad showed high efficiency against lab strain, it exhibited a high resistance ratio (RR) of 15.111 and 13.111 toward the field strain at 24 and 48 h posttreatment, respectively. The two gemini surfactants have a good safety profile and low RR (RR <5), which is close to clove oil; however, G1 and G2 presented high activities with 11,043.230 and 2658.648 folds, respectively, compared to clove oil. The treated Cx. pipiens larvae showed severe morphological malformations after treatment with gemini surfactants. The results of this study are promising in terms of developing novel, effective, affordable, and safe approaches for mosquito control strategies to reduce the risk of arbovirus transmission, which remains a global public health threat.


Assuntos
Culex , Culicidae , Inseticidas , Vírus do Nilo Ocidental , Animais , Mosquitos Vetores , Óleo de Cravo , Inseticidas/farmacologia , Larva
11.
Exp Parasitol ; 251: 108550, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37230323

RESUMO

The control of mosquito breeding is an essential step towards the reduction of vector-borne disease outbreaks. Synthetic larvicidal agents produce resistance in vectors and cause safety concerns in humans, animals and aquatic species. The drawback of synthetic larvicides opened a new avenue for natural larvicidal agents, but poor dosage accuracy, need for frequent applications, low stability and sustainability are the major challenges with them. Hence, this investigation aimed to overcome those drawbacks by developing bilayer tablets loaded with neem oil to prevent mosquito breeding in stagnant water. The optimised batch of neem oil-bilayer tablets (ONBT) had 65%w/w hydroxypropyl methylcellulose K100M and 80%w/w ethylcellulose in its composition. After the completion of 4th week, 91.98 ± 0.871% azadirachtin was released from the ONBT, which was followed by a subsequent drop in the in vitro release. ONBT reported long-term larvicidal efficacy (>75%) and a good deterrent effect which was better than neem oil-based marketed products. The acute toxicity study on a non-target fish model (Poecilia reticulata), OECD Test No.203 confirmed the safety of the ONBT on non-target aquatic species. The accelerated stability studies predicted a good stability profile for the ONBT. The neem oil-based bilayer tablets can be used as an effective tool for the control of vector-borne diseases in society. The product may be a safe, effective and eco-friendly replacement for the existing synthetic as well as natural products in the market.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Doenças Transmitidas por Vetores , Humanos , Animais , Mosquitos Vetores , Larva , Comprimidos
12.
Exp Parasitol ; 252: 108586, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468087

RESUMO

Extensive fumigation of synthetic pesticides to control the mosquito vector during each post-monsoon season in Pakistan significantly enhanced the environmental contamination and extinction of beneficial insects from the urban ecosystems. In this context, the present study examined the larvicidal efficacy of green synthesized iron nanoparticles (IONPs), using an aqueous leaf extract of Grevillea robusta against the early 2nd and 4th instar larvae of Aedes aegypti and Anopheles stephensi in Pakistan. The prepared IONPs were characterized by UV-Vis spectrum, FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive diffraction. Larvicidal bioassay was conducted at various concentrations (80, 160, 240, 320, and 400 ppm) of IONPs prepared from leaf extract of G. robusta, and readings were taken-every 12 h for two consecutive days. In vitro, larvicidal assay, G. robusta leaf extract IONPs exhibited high mortalities of 64-96% (LC50 = 259.07 ppm; LC90 = 443.92 ppm) for the second instar and 65-98% (LC50 = 238.05 ppm; LC90 = 433.93 ppm) for the fourth instar of Ae. aegypti, while in the case of An. stephensi 56-84% (LC50 = 297.96 ppm; LC90 = 528.69 ppm) for the second and 56-88% (LC50 = 292.72 ppm; LC90 = 514.00 ppm) mortality for fourth larvae at 12-48 h post-exposure times were observed respectively. Significant (p < 0.05) dose-dependent and exposure time-dependent trends were observed among the 2nd and 4th larvalinstar of An. stephensi and Ae. aegypti. However, both species showed similar response and observed no significant (p > 0.05) difference in percentage mortality between the vector mosquitoes An. stephensi and Ae. aegypti. Overall, this study demonstrates that the larvicidal efficacy of green synthesized IONPs at low concentrations can be an ideal eco-friendly and cost-effective biocontrol of vector mosquitoes' larvae of An. stephensi and Ae. aegypti.


Assuntos
Aedes , Inseticidas , Animais , Ecossistema , Inseticidas/farmacologia , Larva , Nanopartículas Magnéticas de Óxido de Ferro , Mosquitos Vetores , Extratos Vegetais/farmacologia , Folhas de Planta
13.
Mar Drugs ; 21(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827158

RESUMO

Culex pipiens mosquitoes are transmitters of many viruses and are associated with the transmission of many diseases, such as filariasis and avian malaria, that have a high rate of mortality. The current study draws attention to the larvicidal efficacy of three methanolic algal extracts, Cystoseira myrica, C. trinodis, and C. tamariscifolia, against the third larval instar of Cx. pipiens. The UPLC-ESI-MS analysis of three methanol fractions of algal samples led to the tentative characterization of twelve compounds with different percentages among the three samples belonging to phenolics and terpenoids. Probit analysis was used to calculate the lethal concentrations (LC50 and LC90). The highest level of toxicity was attained after treatment with C. myrica extract using a lethal concentration 50 (LC50) of 105.06 ppm, followed by C. trinodis (135.08 ppm), and the lowest level of toxicity was achieved by C. tamariscifolia (138.71 ppm) after 24 h. The elevation of glutathione-S-transferase (GST) and reduction of acetylcholine esterase (AChE) enzymes confirm the larvicidal activity of the three algal extracts. When compared to untreated larvae, all evaluated extracts revealed a significant reduction in protein, lipid, and carbohydrate contents, verifying their larvicidal effectiveness. To further support the observed activity, an in silico study for the identified compounds was carried out on the two tested enzymes. Results showed that the identified compounds and the tested enzymes had excellent binding affinities for each other. Overall, the current work suggests that the three algal extractions are a prospective source for the development of innovative, environmentally friendly larvicides.


Assuntos
Aedes , Anopheles , Inseticidas , Animais , Estudos Prospectivos , Inseticidas/química , Compostos Fitoquímicos/análise , Metanol/química , Plantas , Larva , Extratos Vegetais/química , Folhas de Planta/química
14.
J Vector Borne Dis ; 60(4): 401-413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174518

RESUMO

Background & objectives: Vector control measures are important in lowering the spread of infections spread by mosquito. Synthetic pesticides used to suppress vector populations during the larval stage have had adverse impacts on people and the environment. The early III instar larvae of Aedes aegypti and Anopheles stephensi were the targets of the current experiment, which assessed the larvicidal ability of petroleum ether, chloroform, methanol, and aqueous extracts of Annona squamosa leaves. Methods: Using the standard World Health Organization (WHO) larval bioassay test, leaf extracts were evaluated for their activity against Ae. aegypti and An. stephensi to determine lethal doses. Phytochemical analysis and gas chromatography-mass spectrometry (GC-MS) were carried out to identify larvicidal components in the extract. Further analysis using a scanning electron microscope (SEM) was done to check the extracts toxicity for both mosquito larvae. Results: The larvicidal active components were identified by GC-MS as tetradecanoic acid, cis-vaccenic acid, and 2,4-di-tert-butylphenol etc. Methanol leaf extracts of A. squamosa (ASME) exhibited strong larvicidal activity against the early 3rd instar larvae of Ae. aegypti and An. stephensi with Lethal concentration (LC50) values of 51.450 ppm and 107.121 ppm. Cell damages to the larva post exposure to ASME were examined. Interpretation & conclusion: This finding showed that the ASME has better larvicidal activity and its components that may be used to kill larvae as larvicides. The extracts toxicity towards damage of midgut of larva further suggests that this plant methanol leaf extracts could be effective in larval growth control approaches.


Assuntos
Aedes , Annona , Anopheles , Culex , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Metanol/farmacologia , Mosquitos Vetores , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta
15.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985426

RESUMO

Aedes aegypti is a vector for the arbovirus responsible for yellow fever, Zika and Chikungunya virus. Essential oils and their constituents are known for their larvicidal properties and are strong candidates for mosquito control. This work aimed to develop a quantitative structure-activity study and molecular screening for the search and design of new larvicidal agents. Twenty-five monoterpenes with previously evaluated larvicidal activity were built and optimized using computational tools. QSAR models were constructed through genetic algorithms from the larvicidal activity and the calculation of theoretical descriptors for each molecule. Docking studies on acetylcholinesterase (AChE) and sterol carrier protein (SCP-2) were also carried out. Results demonstrate that the epoxide groups in the structure of terpenes hinder larvicidal activity, while lipophilicity plays an important role in enhancing biological activity. Larvicidal activity correlates with the interaction of the sterol-carrier protein. Of the 25 compounds evaluated, carvacrol showed the highest larvicidal activity with an LC50 of 8.8 µg/mL. The information included in this work contributes to describing the molecular, topological, and quantum mechanical properties related to the larvicidal activity of monoterpenes and their derivatives.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Infecção por Zika virus , Zika virus , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Terpenos , Relação Quantitativa Estrutura-Atividade , Acetilcolinesterase , Inseticidas/farmacologia , Inseticidas/química , Monoterpenos , Larva , Proteínas de Transporte , Esteróis
16.
Arch Microbiol ; 204(10): 650, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173486

RESUMO

Mosquitoes are a vector for many dreadful diseases known for their public health concern. The continued use of synthetic insecticides against vector control has led to serious environmental impacts, human health problems, and the development of insect resistance. Hence, alternative mosquito control methods are needed to protect the environment and human health. In the present study, the bioefficacy of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl) benzoic acid isolated from Bacillus pumilus were tested against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. The isolated bioactive compound was characterized through thin layer chromatography (TLC), UV-visible spectroscopy (UV), Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry analysis. The pure compound caused a high percent mortality rate in a dose-dependent manner, the obtained values were 96, 82, 69, 50 and 34%; 86, 72, 56, 43, and 44%; 100, 90, 83, 70 and 56% against Ae. aegypti, Cx. quinquefasciatus, and An. stephensi respectively. The effective lethal concentration values (LC50) were 13.65, 14.90 and 9.64 ppm against Ae. aegypti, Cx. quinquefasciatus, An. Stephensi, respectively. The effect of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl) benzoic acid significantly increased the superoxide dismutase, catalase, α, ß esterase and Glutathione-S-transferase level after 24 h of the treatment period. The comet assay confirmed that isolated compound causes DNA damage in all tested insects. Histopathological examinations of treated larvae showed shrunken body posture, damaged epithelial cells and microvillus as compared to control organisms. The biosafety of the isolated compound was assessed against G. affinis and did not produce mortality which confirmed that the activity of the isolated compound is species specific. The current study concludes that the critical success factors of new insecticidal agent development are based on the eco-compatibility and alternative tools for the pesticide producing industry.


Assuntos
Aedes , Anopheles , Bacillus pumilus , Culex , Inseticidas , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Ácido Benzoico/análise , Ácido Benzoico/farmacologia , Catalase/análise , Esterases , Glutationa/análise , Humanos , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Extratos Vegetais/farmacologia , Folhas de Planta/química , Superóxido Dismutase , Transferases
17.
J Appl Microbiol ; 133(2): 857-869, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35505632

RESUMO

AIM: To biosynthesize silver nanoparticles (AgNPs) using fungal isolates [DS-2 (Penicillium oxalicum) and DW-8 (Fusarium hainanense)] as well as their mixed cell-free filtrate (CFF) acting as a consortium (DSW-28) and their bio-potentials. METHODS AND RESULTS: The fungi (DS-2 and DW-8) were harvested and CFF was prepared. CFF of each fungus and their mixture were reacted with silver nitrate solution under dark conditions for the synthesis of AgNPs. The UV-Visible spectra determined the surface plasmon resonance at 438, 441 and 437 nm for the AgNPs synthesized by DS-2, DW-8 and DSW-28, respectively. The band gap energy was found between 2.21 and 2.24 eV which depicted their ability to act as a semiconductor. The TEM imaging revealed the spherical shape and small size of AgNPs. The XRD pattern exhibited the crystalline structure corresponding to their peaks. The FTIR spectra indicate the presence of different functional groups present on the surface of AgNPs. The broad-spectrum antimicrobial activity was exhibited by AgNPs. The AgNPs also act as an effective antioxidant by depicting their radical scavenging activity against DPPH. Moreover, the AgNPs also inhibited the growth of fourth instar larvae of Aedes aegypti and Culex quinquefasciatus more efficiently in a dose-dependent method. The biosynthesized AgNPs from DSW-28 showed a significant anticancer activity against MCF-7 cells. CONCLUSION: The silver nanoparticles synthesized by the CFF of two different fungi act synergistically in a consortium leading towards the production of silver nanoparticles with smaller size and higher bioactivity. SIGNIFICANCE AND IMPACT OF THE STUDY: The impressive bioactivity of the silver nanoparticles synthesized by the mixture of CFF of various fungi acting as a consortium recommends their prospective use in agriculture as well as in biomedical as an antimicrobial, antioxidant, larvicidal and anticancer agents in future.


Assuntos
Anti-Infecciosos , Inseticidas , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Fusarium , Inseticidas/química , Larva , Nanopartículas Metálicas/química , Penicillium , Extratos Vegetais/farmacologia , Prata/farmacologia
18.
Bioorg Chem ; 128: 106098, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987189

RESUMO

Insecticides participate with a vital role in our lives especially in preventing the spread of human diseases via controlling the dangerous pests. It is a challenge to identify alternatives to the ordinary insecticides with new mode of action to be used for mosquitoes' control in an environmentally sustainable manner. Using a facile two-step procedure, three novel series of sulfonamide-incorporating quaternary ammonium iodides (3a-i, 4a-i and 5a-i) were synthesized and their chemical structures were successfully characterized. The uncharged sulfonamide intermediates (2a-i) were constructed through simple amidation of the corresponding (hetero)aryl sulfonyl chlorides then the cationic target molecules were formed by quaternizing the tertiary nitrogen with methyl, ethyl, and allyl iodides. The larvicidal activities and biological effects of most synthesized compounds against Culex pipiens L. were extensively investigated and they exhibited good and comparable activities to temephos. Among these hybrids, 4a showed the most potent activity with LC50 = 26.71 ppm. Additionally, the developmental durations of larval and pupal stages were significantly prolonged after treatment with all concentrations of 4h. At high concentration (160 ppm) of 4a and 4b, no adults emerged due to the complete death of pupae, and consequently zero growth index. Moreover, the results of the molecular docking demonstrated that the activities of compounds correlate partially to their binding with acetylcholinesterase (AChE) and it is not the sole parameter for determining the activity.


Assuntos
Compostos de Amônio , Culex , Inseticidas , Acetilcolinesterase , Compostos de Amônio/farmacologia , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Inseticidas/química , Inseticidas/farmacologia , Iodetos , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia
19.
Pestic Biochem Physiol ; 185: 105151, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772840

RESUMO

The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (-28.4, -22.2, -23.6, and - 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.


Assuntos
Culex , Inseticidas , Óleos Voláteis , Animais , Inseticidas/química , Inseticidas/farmacologia , Larva , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Chá
20.
J Vector Borne Dis ; 59(4): 320-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36751763

RESUMO

BACKGROUND & OBJECTIVES: Recently, the use of biodegradable and environment friendly plant-based bioinsecticides has received a great deal of attention from researchers to control insect disease vectors. The aim of this research is to determine the larvicidal efficacy of Ruta graveolens essential oil against third instar larvae of two species of mosquito (Culex pipiens and Culiseta longiareolata) and a biological model Drosophila melanogaster. METHODS: Culiseta longiareolata and Culex pipiens larvae were collected from untreated areas located in Tebessa and Drosophila melanogaster, the wild strain collected from rotten apples in the Tebessa region. Ruta graveolens essential oil has been tested at different concentrations between 2.5µ/mL and 140µL/mL against third instar larvae of the three species under standard laboratory conditions according to the recommendations from the Word Health Organization. The effects were examined on mortality, growth and the main components (proteins, carbohydrates, lipids). RESULTS: The essential oil showed larvicidal activity with LC50 and LC90 values (10.85µL/mL, 70.95µL/mL and 39.4µL/mL), (26µL/mL, 144.5µL/mL and 89.57µL/mL) against third instar larvae of Drosophila melanogaster, Culex pipiens and Culiseta longiareolata respectively. In addition, it disrupted the growth and several morphological malformations were observed. It also affected growth and the main components (proteins, carbohydrates, lipids). INTERPRETATION & CONCLUSION: The essential oil affected growth and energy reserves for all three species. The results indicated that the essential oil of Ruta graveolens has good potential as a source of natural larvicides.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Óleos Voláteis , Ruta , Animais , Drosophila melanogaster , Mosquitos Vetores , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA