RESUMO
PURPOSE: To determine if there is a correlation between lateral tibial slope and long-term clinical results in patients who underwent double-bundle ACL reconstruction. METHODS: We retrospectively reviewed patients that received double-bundle ACL reconstruction at a single institution by a single surgeon from January 2011 to December 2014. All the magnetic resonance imaging were reviewed and lateral tibial slopes (LTS) were recorded by an experienced surgeon and rechecked by the other two authors of this study that specialized in orthopedic knee surgery. The relationship between PROMs measurement and lateral tibial slope were analyzed. The patients were then separated into two groups (LTS > 7.4° and < 7.4°) according to the previous study. RESULTS: A total of 119 patients were enrolled in this study. All enrolled patients were followed for at least 8 years. The PROMS result were negatively correlated with the lateral tibial slope (p values all < 0.001). The patients with high lateral tibial slope had significantly lower PROMS values (Lysholm 94.26 ± 5.61 vs 80.15 ± 8.28, p = 0.013; IKDC 82.99 ± 4.55 vs 70.09 ± 7.15, p = 0.003; Tegner 9.32 ± 0.95 vs 6.85 ± 1.99, p < 0.001). Finally, the LTS cutoff value between patients with "Good" and "Fair" Lysholm score in our study was 7.55 degrees. CONCLUSIONS: Patients with high lateral tibial slope may result in inferior long-term subjective outcomes. The using of double-bundle ACL reconstruction along cannot overcome the negative impact caused by steep lateral tibial slope. A lateral tibial slope of 7.55° may be used as a cut-off for a good clinical outcome. LEVEL OF EVIDENCE: III retrospective comparative prognostic trial.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Estudos Retrospectivos , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho/cirurgia , Tíbia/cirurgiaRESUMO
BACKGROUND: Meniscus root tear is an uncommon but detrimental injury of the knee. Hoop stress is lost during meniscus root tear, which can lead to excessive tibiofemoral contact pressure and early development of osteoarthritis. Posterolateral meniscus root tears (PLRT) are more commonly associated with anterior cruciate ligament (ACL) tears. As the lateral compartment is less congruent than the medial compartment, it is more susceptible to a shearing force, which is increased in the ACL-deficient knee. In accordance with the compressive axial load, the increase in the tibial slope would generate a greater shearing force. The additional lateral compartment mobility caused by ACL tear should be reduced after ACL reconstruction (ACLR). However, there is a lack of evidence to conclude that ACLR can sufficiently limit the effect of large tibial slope (LTS) on the healing after PLRT repair. This study aimed to evaluate whether a steep LTS would be a risk factor for poorer clinical outcomes after PLRT repair concomitant with ACLR. METHODS: In this retrospective study, a chart review was conducted to identify patients with concomitant unilateral primary ACLR and PLRT repair. Patients with a partial tear or healed tear were excluded. Postoperative MRI and clinical assessments were performed at a mean follow up of 35 months. MRI data was used to measure the LTS, medial tibial slope (MTS), coronal tibial slope (CTS), the lateral-to-medial slope difference (LTS-MTS) and meniscus healing and extrusion. Functional outcomes were evaluated by patient-reported outcomes (International Knee Documentation Committee [IKDC], Lysholm and Tegner scores) and KT-1000 arthrometer assessment. Interobserver reproducibility was assessed by two reviewers. RESULTS: Twenty-five patients were identified for the analysis. Patients with larger LTS and larger LTS-MTS differences were shown to be correlated with poorer IKDC scores after surgery (R = -0.472, p = 0.017 and R = -0.429, p = 0.032, respectively). Herein, patients with LTS ≥ 6° or LTS-MTS ≥ 3° demonstrated poorer IKDC scores. CONCLUSION: A large LTS (≥ 6°) and a large difference of LTS-MTS (≥ 3°) were shown to be risk factors for poorer functional and radiological outcomes for PLRT repair in patients after ACLR. Clinically, closer monitoring and a more stringent rehabilitation plan for patients with LTS ≥ 6° or LTS-MTS ≥ 3° would be recommended.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Lesões do Menisco Tibial , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Humanos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Lesões do Menisco Tibial/diagnóstico por imagem , Lesões do Menisco Tibial/etiologia , Lesões do Menisco Tibial/cirurgiaRESUMO
PURPOSE: To identify the radiological predictive risk factors for anterior cruciate ligament reconstruction (ACLR) failure, compare the diagnostic accuracies of different parameters of conventional radiographs and magnetic resonance imaging (MRI), and determine the cutoff values for patients at higher risk. METHODS: Twenty-eight patients who were diagnosed as ACLR failure via MRI or arthroscopic examination were included in the study group. They were matched to 56 patients who underwent primary ACLR with the same surgical technique and without graft failure at the minimum 24-month follow-up by age, sex, and body mass index. On true lateral whole-leg radiographs, the posterior tibial slope (PTS) referenced to the tibial mechanical axis (PTS-mechanical), PTS referenced to the tibial proximal anatomical axis (PTS-anatomical), and anterior tibial translation (ATT) were measured. On the sagittal slices of MRI, the medial tibial slope (MTS), medial tibial plateau (MTP) subluxation (MTPsublx), lateral tibial slope (LTS), and lateral tibial plateau (LTP) subluxation (LTPsublx) were obtained. Receiver operator characteristic (ROC) curves were constructed to compare the diagnostic performance and determine the cutoff values of different radiological parameters. RESULTS: The study group demonstrated higher values of PTS-mechanical (10.7° ± 2.9° vs 8.7° ± 1.9°, p = 0.003), PTS-anatomical (13.2° ± 2.8° vs 10.5° ± 2.5°, p < 0.001), ATT (10.7 ± 3.3 mm vs 8.9 ± 2.2 mm, p = 0.014), LTS (9.4° ± 2.1° vs 5.5° ± 2.5°, p < 0.001), and LTPsublx (8.2 ± 2.8 mm vs 6.8 ± 1.9 mm, p = 0.009) as compared with the control group. The area under the ROC curve of LTS was significantly larger than that of PTS-mechanical (p = 0.006) and PTS-anatomical (p = 0.020). Based on the maximum Youden indexes, the cutoff values of PTS-mechanical, PTS-anatomical, and LTS were 10.1° (sensitivity, 64.3%; specificity, 78.6%), 12.0° (sensitivity, 71.4%; specificity, 71.4%), and 7.7° (sensitivity, 85.7%; specificity, 80.4%), respectively. CONCLUSION: Due to the morphological asymmetry of the MTP and LTP, steep LTS measured on MRI is the best radiological predictor of ACLR failure. Detailed measurement of the LTS on MRI is recommended to evaluate the risk of ACLR failure prior to the surgery. LEVEL OF EVIDENCE: III.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos de Casos e Controles , Humanos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Tíbia/anatomia & histologia , Tíbia/diagnóstico por imagem , Tíbia/cirurgiaRESUMO
BACKGROUND: While increased posterior tibial slope (PTS) is an established risk factor for anterior cruciate ligament tears, the association between tibial slope and meniscal posterior root tears is not well-defined. PURPOSE: To summarize the available literature evaluating the association between PTS and meniscus root injuries compared with patients without root tears. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: A literature search was performed using the Scopus, PubMed, and Embase databases. Human clinical studies evaluating the associations between the medial tibial slope (MTS), lateral tibial slope (LTS), lateral-to-medial (L-to-M) slope asymmetry, and the risk of meniscus root tears were included. Patients with medial meniscus posterior root tears (MMPRTs) and lateral meniscus posterior root tears (LMPRTs) were compared with a control group without root injury. Study quality was assessed using the methodological index for non-randomized studies criteria. RESULTS: Ten studies with 1313 patients were included (884 patients with root tears; 429 controls). The LMPRT subgroup (n = 284) had a significantly greater LTS (mean ± SD, 7.3°± 1.5° vs 5.7°± 3.91°; P < .001), MTS (5.26°± 1.2° vs 4.8°± 1.25°; P < .001), and increased L-to-M asymmetry (2.3°± 1.3° vs 0.65°± 0.5°; P < .001) compared with controls. The MMPRT group (n = 600) had significantly increased MTS relative to controls (8.1°± 2.5° vs 4.3°± 0.7°; P < .001). Furthermore, there was a higher incidence of noncontact injuries (79.3%) and concomitant ramp lesions (56%) reported in patients with LMPRT. CONCLUSION: Increased MTS, LTS, and L-to-M slope asymmetry are associated with an increased risk of LMPRTs, while increased MTS is associated with MMPRTs. Surgeons should consider how proximal tibial anatomy increases the risk of meniscus root injury.
RESUMO
BACKGROUND: The impact of anatomical factors, such as the lateral tibial slope (LTS), on outcomes following anterior cruciate ligament (ACL) reconstruction is an area of growing interest. This study was led by the observation that patients with a higher LTS may have different recovery trajectories. HYPOTHESIS/PURPOSE: The purpose of this study was to investigate the correlation between a higher LTS and long term subjective outcomes following single-bundle ACL reconstruction. STUDY DESIGN: This study was designed as a retrospective cohort study. METHODS: The study comprised 138 patients who underwent single-bundle ACL reconstruction. The LTS was measured on preoperative radiographs. Patient-reported outcome measures (PROMs) were collected, which included the Lysholm Knee Score, UCLA Activity Score, IKDC Score, and Tegner Activity Score, over a mean follow-up duration of 137 months. RESULTS: A significant negative correlation was found between LTS and all measured PROMs (p < 0.001). The established cut-off value of LTS distinguishing between "Good" and "Fair" Lysholm scores was 8.35 degrees. Female patients have statistically significant higher LTS and lower PROMs scores than male. Patients with LTS greater than or equal to 8.35 had significantly lower PROMs, indicative of poorer functional and subjective outcomes. CONCLUSION: Our findings suggest that a higher LTS is associated with inferior subjective outcomes following single-bundle ACL reconstruction in long term. The LTS cut-off value of 8.35 degrees could potentially be used as a reference in preoperative planning and patient counseling. CLINICAL RELEVANCE: Understanding the relationship between LTS and ACL reconstruction outcomes could inform surgical planning and postoperative management. These findings highlight the need to consider anatomical variances, such as LTS, when assessing patient-specific risks and recovery expectations, contributing to the advancement of personalized care in sports medicine.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Medidas de Resultados Relatados pelo Paciente , Tíbia , Humanos , Reconstrução do Ligamento Cruzado Anterior/métodos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Tíbia/cirurgia , Tíbia/diagnóstico por imagem , Adulto Jovem , Resultado do Tratamento , Adolescente , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos de Coortes , Seguimentos , Fatores de TempoRESUMO
BACKGROUND: The slope of the tibial plateau has been proposed as a reason for failure of anterior cruciate ligament reconstruction. PURPOSE: To evaluate the interobserver reliability of measurements of tibial slope on radiographs versus magnetic resonance imaging (MRI) scans and to assess whether the modalities can be used interchangeably for this purpose. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 3. METHODS: This retrospective study included 81 patients aged 18 to 30 years who were evaluated in a sports medicine setting for knee pain and who had lateral knee radiographs as well as knee MRI scans on file. Medial and lateral tibial plateau slope measurements were made by 3 blinded reviewers from the radiographs and MRI scans using graphic overlay software. The paired t test was used to compare measurements of the medial tibial plateau slope (MTPS) and lateral tibial plateau slope (LTPS) from radiographs and MRI scans. Intraclass correlation coefficients (ICCs) were calculated to determine intra- and interobserver reliability of measurements within each imaging modality, and Pearson correlation coefficients were calculated to determine the relationship between measurements on radiographs versus MRI scans. RESULTS: Imaging from 81 patients were included. The average MTPS was significantly larger on radiographs compared with MRI scans (8.7° ± 3.6° vs 3.7° ± 3.4°; P < .001), and the average LTPS was also significantly larger on radiographs compared with MRI scans (7.9° ± 3.4° vs 5.7° ± 3.7°; P < .001). ICC values indicated good to excellent intraobserver agreement for all imaging modalities (ICC, 0.81-0.97; P ≤ .009). The ICCs for interobserver reliability of MTPS and LTPS measurements were 0.92 and 0.85 for radiographs, 0.87 and 0.83 for MRI based off the subchondral bone, and 0.86 and 0.71 for MRI based off the cartilage, respectively (P < .001). Medium correlation was noted between radiographic and MRI measurements; Pearson correlation coefficients for radiographic versus subchondral MRI measurements were 0.30 and 0.37 for MTPS and LTPS, respectively. CONCLUSION: The average MTPS and LTPS were significantly larger on radiographs compared with MRI scans. Although tibial slope measurements using radiography and those using MRI are reliable between individuals, the measurements from radiographs and MRI scans cannot be used interchangeably, and caution should be used when interpreting and comparing studies using measurements of the tibial slope.
RESUMO
BACKGROUND: The cause of mucoid degeneration (MD) of the anterior cruciate ligament (ACL), which is commonly observed on magnetic resonance imaging (MRI) of patients with knee pain, has yet to be elucidated. Despite the limited evidence on the relationship between ACL lesions (injury and MD) and tibial morphologic features (ie, posterior tibial slope), the potential association between the presence of ACL MD and medial and lateral tibial slope (MTS and LTS) has not been well-established. PURPOSE: To investigate whether MTS and LTS measurements are associated with the presence of ACL MD. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Consecutive knee MRI examinations of patients referred by an orthopaedic surgeon for potential internal joint derangements were identified within a 4-year period. The presence of ACL MD and the MTS/LTS values were assessed by independent expert observers in consensus in a blinded fashion. From 413 consecutive knee MRI scans, a sample of 80 knees, including 32 knees with ACL MD (cases) and 48 knees with normal ACL (controls), were selected using propensity score matching method for age, sex, body mass index, and presence of severe medial tibiofemoral compartment cartilage damage. The association between ACL MD and MTS/LTS was evaluated using conditional regression models. RESULTS: Knees with ACL MD had higher values of LTS (mean ± SD, 7.18° ± 3.58°) in comparison with control knees (5.32° ± 3.35°). Conditional regression analysis revealed a significant association between LTS measurements (not MTS) and ACL MD; every 1° increase in LTS was associated with a 17% (95% CI, 1%-35%) higher probability of having ACL MD. CONCLUSION: Excessive LTS was associated with the presence of ACL MD, independent of participants' age, sex, BMI, and cartilage damage severity.
RESUMO
BACKGROUND: There is evidence that tibial slope may play a role in revision risk after anterior cruciate ligament reconstruction (ACLR); however, prior studies are inconsistent. PURPOSE: To determine (1) whether there is a difference in lateral tibial posterior slope (LTPS) or medial tibial posterior slope (MTPS) between patients undergoing revised ACLR and those not requiring revision and (2) whether the medial-to-lateral slope difference is different between these 2 groups. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: We conducted a matched case-control study (2006-2015). Cases were patients aged ≤21 years who underwent revision surgery after primary unilateral ACLR; controls were patients aged ≤21 years without revision who were identified from the same source population. Controls were matched to cases by age, sex, body mass index, race, graft type, femoral fixation device, and post-ACLR follow-up time. Tibial slope measurements were made by a single blinded reviewer using magnetic resonance imaging. The Wilcoxon signed rank test and McNemar test were used for continuous and categorical variables, respectively. RESULTS: No difference was observed between revised and nonrevised ACLR groups for LTPS (median: 6° vs 6°, P = .973) or MTPS (median: 4° vs 5°, P = .281). Furthermore, no difference was found for medial-to-lateral slope difference (median: -1 vs -1, P = .289). A greater proportion of patients with revised ACLR had an LTPS ≥12° (7.6% vs 3.8%) and ≥13° (4.7% vs 1.3%); however, this was not statistically significant after accounting for multiple testing. CONCLUSION: We failed to observe an association between revision ACLR surgery and LTPS, MTPS, or medial-to-lateral slope difference. However, there was a greater proportion of patients in the revision ACLR group with an LTPS ≥12°, suggesting that a minority of patients who have more extreme values of LTPS have a higher revision risk after primary ACLR. A future cohort study evaluating the angle that best differentiates patients at highest risk for revision is needed.