Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag ; 55: 165-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27103399

RESUMO

Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale.


Assuntos
Modelos Teóricos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Reatores Biológicos , Hidrodinâmica , Movimentos da Água
2.
Waste Manag ; 55: 176-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27095292

RESUMO

Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected.


Assuntos
Modelos Teóricos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Reatores Biológicos , Eletricidade , Hidrodinâmica , Movimentos da Água
3.
Eng. sanit. ambient ; 9(3): 180-186, jul.-set. 2004. ilus, graf, tab
Artigo em Português | LILACS | ID: lil-512581

RESUMO

Neste estudo avaliou-se o transporte de líquidos e a atenuação da carga orgânica do chorume de aterro sanitário em um solo arenoso fino, compactado com diferentes graus de compactação. Para tanto foram construídas colunas de 1 m do solo compactado com 75 (natural), 80, 85, 90 e 95% do Proctor Normal, que foram alimentadas com água e com chorume, sob condições não saturadas. Foram verificadas reduções sensíveis na permeabilidade do chorume e na remoção de DQO para as colunas submetidas a graus de compactação igual ou superior a 85%. Os resultados desta pesquisa mostram o grande potencial de uso deste solo compactado, em bases de aterros sanitários de pequeno porte, para a retenção da carga orgânica de chorume.


Water and leachate flow and COD attenuation through a fine sandy soil at different compaction degree were assessed, based on column tests results. Each column was 1.0 m deep and 0.097 m in diameter, and the soil was compacted with 75 (natural), 80, 85, 90 and 95% of Standard Proctor Test, to receive water or sanitary landfill leachate under unsaturated conditions. During the experiment, COD removal and leachate permeability reduction were very significant for columns with 85% or higher compaction levels. The results show the high potential of this practice to install simple system in small sanitary landfills, for leachate organic loading retention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA