Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.402
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
2.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29275860

RESUMO

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Assuntos
Adenocarcinoma/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Idoso , Animais , Antígenos de Neoplasias/química , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Células Sf9 , Spodoptera
3.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754820

RESUMO

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análise por Conglomerados , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Perda de Heterozigosidade , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643615

RESUMO

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37257450

RESUMO

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Assuntos
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infecções Irruptivas , Multiômica , Anticorpos Neutralizantes , Anticorpos Antivirais
6.
Cell ; 171(6): 1272-1283.e15, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107334

RESUMO

MHC-I molecules expose the intracellular protein content on the cell surface, allowing T cells to detect foreign or mutated peptides. The combination of six MHC-I alleles each individual carries defines the sub-peptidome that can be effectively presented. We applied this concept to human cancer, hypothesizing that oncogenic mutations could arise in gaps in personal MHC-I presentation. To validate this hypothesis, we developed and applied a residue-centric patient presentation score to 9,176 cancer patients across 1,018 recurrent oncogenic mutations. We found that patient MHC-I genotype-based scores could predict which mutations were more likely to emerge in their tumor. Accordingly, poor presentation of a mutation across patients was correlated with higher frequency among tumors. These results support that MHC-I genotype-restricted immunoediting during tumor formation shapes the landscape of oncogenic mutations observed in clinically diagnosed tumors and paves the way for predicting personal cancer susceptibilities from knowledge of MHC-I genotype.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Mutação , Neoplasias/imunologia , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Células HeLa , Humanos , Masculino , Monitorização Imunológica , Proteoma
7.
Immunity ; 55(1): 56-64.e4, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34986342

RESUMO

We evaluated the impact of class I and class II human leukocyte antigen (HLA) genotypes, heterozygosity, and diversity on the efficacy of pembrolizumab. Seventeen pembrolizumab clinical trials across eight tumor types and one basket trial in patients with advanced solid tumors were included (n > 3,500 analyzed). Germline DNA was genotyped using a custom genotyping array. HLA diversity (measured by heterozygosity and evolutionary divergence) across class I loci was not associated with improved response to pembrolizumab, either within each tumor type evaluated or across all patients. Similarly, HLA heterozygosity at each class I and class II gene was not associated with response to pembrolizumab after accounting for the number of tests conducted. No conclusive association between HLA genotype and response to pembrolizumab was identified in this dataset. Germline HLA genotype or diversity alone is not an important independent determinant of response to pembrolizumab and should not be used for clinical decision-making in patients treated with pembrolizumab.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Genótipo , Mutação em Linhagem Germinativa/genética , Antígenos HLA/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Fatores Etários , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/mortalidade , Polimorfismo Genético , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores Sexuais , Análise de Sobrevida , Resultado do Tratamento
8.
Mol Cell ; 82(14): 2557-2570.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35594857

RESUMO

Antigen presentation by the human leukocyte antigen (HLA) on the cell surface is critical for the transduction of the immune signal toward cytotoxic T lymphocytes. DNA damage upregulates HLA class I presentation; however, the mechanism is unclear. Here, we show that DNA-damage-induced HLA (di-HLA) presentation requires an immunoproteasome, PSMB8/9/10, and antigen-transporter, TAP1/2, demonstrating that antigen production is essential. Furthermore, we show that di-HLA presentation requires ATR, AKT, mTORC1, and p70-S6K signaling. Notably, the depletion of CBP20, a factor initiating the pioneer round of translation (PRT) that precedes nonsense-mediated mRNA decay (NMD), abolishes di-HLA presentation, suggesting that di-antigen production requires PRT. RNA-seq analysis demonstrates that DNA damage reduces NMD transcripts in an ATR-dependent manner, consistent with the requirement for ATR in the initiation of PRT/NMD. Finally, bioinformatics analysis identifies that PRT-derived 9-mer peptides bind to HLA and are potentially immunogenic. Therefore, DNA damage signaling produces immunogenic antigens by utilizing the machinery of PRT/NMD.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , Apresentação de Antígeno , Dano ao DNA , Antígenos de Histocompatibilidade Classe I/genética , Humanos
9.
Immunity ; 51(3): 561-572.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31402260

RESUMO

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.


Assuntos
Células Endoteliais/imunologia , Neutrófilos/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Humanos , Lectinas Tipo C/imunologia , Antígenos CD15/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/imunologia , Inquéritos e Questionários
10.
Immunol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867408

RESUMO

Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.

11.
Am J Hum Genet ; 111(1): 181-199, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181733

RESUMO

Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRß1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Formação de Anticorpos/genética , Vacinas contra COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
12.
Immunity ; 49(6): 1175-1190.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527911

RESUMO

The number of leukocytes present in circulation varies throughout the day, reflecting bone marrow output and emigration from blood into tissues. Using an organism-wide circadian screening approach, we detected oscillations in pro-migratory factors that were distinct for specific vascular beds and individual leukocyte subsets. This rhythmic molecular signature governed time-of-day-dependent homing behavior of leukocyte subsets to specific organs. Ablation of BMAL1, a transcription factor central to circadian clock function, in endothelial cells or leukocyte subsets demonstrated that rhythmic recruitment is dependent on both microenvironmental and cell-autonomous oscillations. These oscillatory patterns defined leukocyte trafficking in both homeostasis and inflammation and determined detectable tumor burden in blood cancer models. Rhythms in the expression of pro-migratory factors and migration capacities were preserved in human primary leukocytes. The definition of spatial and temporal expression profiles of pro-migratory factors guiding leukocyte migration patterns to organs provides a resource for the further study of the impact of circadian rhythms in immunity.


Assuntos
Movimento Celular/imunologia , Ritmo Circadiano/imunologia , Regulação da Expressão Gênica/imunologia , Leucócitos/imunologia , Fatores de Transcrição/imunologia , Adulto , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Homeostase/genética , Homeostase/imunologia , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Trends Biochem Sci ; 47(3): 265-278, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34872819

RESUMO

Cell adhesion is essential for the formation of organs, cellular migration, and interaction with target cells and the extracellular matrix. Integrins are large protein α/ß-chain heterodimers and form a major family of cell adhesion molecules. Recent research has dramatically increased our knowledge of how integrin phosphorylations regulate integrin activity. Phosphorylations determine the signaling complexes formed on the cytoplasmic tails, regulating downstream signaling. α-Chain phosphorylation is necessary for inducing ß-chain phosphorylation in LFA-1, and the crosstalk from one integrin to another activating or inactivating its function is in part mediated by phosphorylation of ß-chains. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus receptor angiotensin-converting enzyme 2 (ACE2) and possible integrin coreceptors may crosstalk and induce a phosphorylation switch and autophagy.


Assuntos
COVID-19 , Integrinas , Adesão Celular , Humanos , Integrinas/metabolismo , Fosforilação , SARS-CoV-2
14.
Hum Mol Genet ; 33(14): 1262-1272, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676403

RESUMO

BACKGROUND: Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS: We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS: We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS: Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.


Assuntos
Predisposição Genética para Doença , Insuficiência Cardíaca , Leucócitos , Telômero , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/epidemiologia , Feminino , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Telômero/genética , Doença Crônica , Idoso , Estudos Prospectivos , Homeostase do Telômero/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Adulto , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla , População Branca/genética , População Europeia
15.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522363

RESUMO

Xenopus laevis tadpoles can regenerate whole tails after amputation. We have previously reported that interleukin 11 (il11) is required for tail regeneration. In this study, we have screened for genes that support tail regeneration under Il11 signaling in a certain cell type and have identified the previously uncharacterized genes Xetrov90002578m.L and Xetrov90002579m.S [referred to hereafter as regeneration factors expressed on myeloid.L (rfem.L) and rfem.S]. Knockdown (KD) of rfem.L and rfem.S causes defects of tail regeneration, indicating that rfem.L and/or rfem.S are required for tail regeneration. Single-cell RNA sequencing (scRNA-seq) revealed that rfem.L and rfem.S are expressed in a subset of leukocytes with a macrophage-like gene expression profile. KD of colony-stimulating factor 1 (csf1), which is essential for macrophage differentiation and survival, reduced rfem.L and rfem.S expression levels and the number of rfem.L- and rfem.S-expressing cells in the regeneration bud. Furthermore, forced expression of rfem.L under control of the mpeg1 promoter, which drives rfem.L in macrophage-like cells, rescues rfem.L and rfem.S KD-induced tail regeneration defects. Our findings suggest that rfem.L or rfem.S expression in macrophage-like cells is required for tail regeneration.


Assuntos
Interleucina-11 , Transdução de Sinais , Animais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Interleucina-11/metabolismo , Larva/genética , Transdução de Sinais/genética , Macrófagos , Cauda
16.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487848

RESUMO

The major histocompatibility complex (MHC) encodes a range of immune response genes, including the human leukocyte antigens (HLAs) in humans. These molecules bind peptide antigens and present them on the cell surface for T cell recognition. The repertoires of peptides presented by HLA molecules are termed immunopeptidomes. The highly polymorphic nature of the genres that encode the HLA molecules confers allotype-specific differences in the sequences of bound ligands. Allotype-specific ligand preferences are often defined by peptide-binding motifs. Individuals express up to six classical class I HLA allotypes, which likely present peptides displaying different binding motifs. Such complex datasets make the deconvolution of immunopeptidomic data into allotype-specific contributions and further dissection of binding-specificities challenging. Herein, we developed MHCpLogics as an interactive machine learning-based tool for mining peptide-binding sequence motifs and visualization of immunopeptidome data across complex datasets. We showcase the functionalities of MHCpLogics by analyzing both in-house and published mono- and multi-allelic immunopeptidomics data. The visualization modalities of MHCpLogics allow users to inspect clustered sequences down to individual peptide components and to examine broader sequence patterns within multiple immunopeptidome datasets. MHCpLogics can deconvolute large immunopeptidome datasets enabling the interrogation of clusters for the segregation of allotype-specific peptide sequence motifs, identification of sub-peptidome motifs, and the exportation of clustered peptide sequence lists. The tool facilitates rapid inspection of immunopeptidomes as a resource for the immunology and vaccine communities. MHCpLogics is a standalone application available via an executable installation at: https://github.com/PurcellLab/MHCpLogics.


Assuntos
Visualização de Dados , Peptídeos , Humanos , Peptídeos/química , Antígenos HLA/genética , Antígenos de Histocompatibilidade , Aprendizado de Máquina , Análise por Conglomerados
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770719

RESUMO

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Assuntos
Algoritmos , Vacinas Anticâncer , Método de Monte Carlo , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Antígenos HLA/imunologia , Antígenos HLA/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Mutação
18.
Immunity ; 46(1): 120-132, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28087238

RESUMO

Lymphocytes circulate through lymph nodes (LN) in search for antigen in what is believed to be a continuous process. Here, we show that lymphocyte migration through lymph nodes and lymph occurred in a non-continuous, circadian manner. Lymphocyte homing to lymph nodes peaked at night onset, with cells leaving the tissue during the day. This resulted in strong oscillations in lymphocyte cellularity in lymph nodes and efferent lymphatic fluid. Using lineage-specific genetic ablation of circadian clock function, we demonstrated this to be dependent on rhythmic expression of promigratory factors on lymphocytes. Dendritic cell numbers peaked in phase with lymphocytes, with diurnal oscillations being present in disease severity after immunization to induce experimental autoimmune encephalomyelitis (EAE). These rhythms were abolished by genetic disruption of T cell clocks, demonstrating a circadian regulation of lymphocyte migration through lymph nodes with time-of-day of immunization being critical for adaptive immune responses weeks later.


Assuntos
Imunidade Adaptativa/imunologia , Quimiotaxia de Leucócito/imunologia , Relógios Circadianos/imunologia , Vigilância Imunológica/imunologia , Linfócitos/imunologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Imunofluorescência , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
19.
Proc Natl Acad Sci U S A ; 120(25): e2304055120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310998

RESUMO

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (ß2 microglobulin, ß2m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/ß2m interface, to generate conformationally stable, peptide-receptive molecules named "open MHC-I." Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type when loaded with low- to moderate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in ß2m-interacting sites of the peptide-binding groove to long-range effects on the α2-1 helix and α3 domain. The interchain disulfide bond stabilizes MHC-I molecules in an open conformation to promote peptide exchange across multiple human leukocyte antigen (HLA) allotypes, covering representatives from five HLA-A supertypes, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structure-guided design, combined with conditional ß-peptide ligands, provides a universal platform to generate ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires covering highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade , Humanos , Peptídeos/genética , Complexo Principal de Histocompatibilidade , Epitopos , Dissulfetos
20.
Immunol Rev ; 308(1): 55-76, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35610960

RESUMO

Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.


Assuntos
Antígenos HLA-C , Trofoblastos , Feminino , Feto/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Humanos , Células Matadoras Naturais , Placenta , Gravidez , Receptores KIR/genética , Receptores KIR/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA