Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 92(1): 15-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37497770

RESUMO

Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the ß-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.


Assuntos
Isoleucina , Proteínas de Membrana , Leucina/química , Isoleucina/química , Sequência de Aminoácidos , Proteínas de Membrana/química , Aminoácidos , Proteínas de Transporte/metabolismo
2.
Appl Environ Microbiol ; 90(2): e0209623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289137

RESUMO

Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Salicilatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
3.
Chemistry ; : e202401954, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958040

RESUMO

Considering the broad use of the trifluoromethyl functional group (-CF3) in medicinal chemistry and taking into account the recent concerns on the negative environmental effects of CF3 containing compounds, we are searching for "greener" alternatives. Thus, different chemical groups (i.e. iodide, fluoride, cyclopropyl, isopropyl, cyclobutyl, 3-oxetyl, 2-oxetyl, methylsulfide, pentafluorosulfide, methylsulfonyl and sulfonamide) have been considered as potential bioequivalents of -CF3 aiming to use them in compounds with therapeutic interest instead of the polyfluoride functionality. Different structural (molecular surface and volume) and physicochemical (electronic and lipophilic) aspects of the bioequivalent functionalities proposed have been theoretically calculated and compared to those of -CF3. Additionally, the corresponding phenyl derivatives carrying these functionalities have been purchased or prepared and their experimental lipophilicity (i.e. LogP) measured using shake-flask experiments and UV-vis spectroscopy.

4.
Chemistry ; 30(12): e202303859, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149408

RESUMO

Electrophilic double bond functionalization - intramolecular enolate alkylation sequence was used to obtain a series of bridged and fused bicyclo[m.n.k]alkane derivatives (i. e., bicyclo[4.1.1]octanes, bicyclo[2.2.1]heptanes, bicyclo[3.2.1]octanes, bicyclo[3.1.0]hexanes, and bicyclo[4.2.0]heptanes). The scope and limitations of the method were established, and applicability to the multigram synthesis of target bicyclic compounds was illustrated. Using the developed protocols, over 50 mono- and bifunctional building blocks relevant to medicinal chemistry were prepared. The synthesized compounds are promising isosteres of benzene and cycloalkane rings, which is confirmed by their physicochemical and structural characterization (pKa , LogP, and exit vector parameters (EVP)). "Rules of thumb" for the upcoming isosteric replacement studies were proposed.

5.
Pharm Res ; 41(6): 1121-1138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720034

RESUMO

PURPOSE: The goal was to assess, for lipophilic drugs, the impact of logP on human volume of distribution at steady-state (VDss) predictions, including intermediate fut and Kp values, from six methods: Oie-Tozer, Rodgers-Rowland (tissue-specific Kp and only muscle Kp), GastroPlus, Korzekwa-Nagar, and TCM-New. METHOD: A sensitivity analysis with focus on logP was conducted by keeping pKa and fup constant for each of four drugs, while varying logP. VDss was also calculated for the specific literature logP values. Error prediction analysis was conducted by analyzing prediction errors by source of logP values, drug, and overall values. RESULTS: The Rodgers-Rowland methods were highly sensitive to logP values, followed by GastroPlus and Korzekwa-Nagar. The Oie-Tozer and TCM-New methods were only modestly sensitive to logP. Hence, the relative performance of these methods depended upon the source of logP value. As logP values increased, TCM-New and Oie-Tozer were the most accurate methods. TCM-New was the only method that was accurate regardless of logP value source. Oie-Tozer provided accurate predictions for griseofulvin, posaconazole, and isavuconazole; GastroPlus for itraconazole and isavuconazole; Korzekwa-Nagar for posaconazole; and TCM-New for griseofulvin, posaconazole, and isavuconazole. Both Rodgers-Rowland methods provided inaccurate predictions due to the overprediction of VDss. CONCLUSIONS: TCM-New was the most accurate prediction of human VDss across four drugs and three logP sources, followed by Oie-Tozer. TCM-New showed to be the best method for VDss prediction of highly lipophilic drugs, suggesting BPR as a favorable surrogate for drug partitioning in the tissues, and which avoids the use of fup.


Assuntos
Modelos Biológicos , Humanos , Preparações Farmacêuticas/química , Incerteza , Farmacocinética , Distribuição Tecidual , Triazóis
6.
Bioorg Med Chem Lett ; 100: 129620, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280655

RESUMO

Six amino derivatives of xanthone were obtained via chemical synthesis. Biochemical studies revealed their SIRT2 inhibitory activity ranging from 48.5 % (compound 4, 5-chloro-2-((4-(3-methoxyphenyl)piperazin-1-yl)methyl)-9H-xanthen-9-one hydrochloride) to 93.2 % (compound 3, 5-chloro-2-(((2-methoxyphenethyl)amino)methyl)-9H-xanthen-9-one hydrochloride). The structure-activity analysis showed favourable properties of secondary amines relative to tertiary piperazine derivatives. The tested compounds do not possess additional SIRT1 activating activity and no antioxidant activity (DPPH in vitro assay). Comprehensive analysis of the lipophilicity of the obtained compounds was also performed. For compound 3 potential molecular targets and similar active compounds were predicted in order to facilitate further research in this group of compounds.


Assuntos
Sirtuína 2 , Xantonas , Piperazina , Xantonas/farmacologia , Xantonas/química , Relação Estrutura-Atividade
7.
Bioorg Chem ; 147: 107359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613925

RESUMO

Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 µM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.


Assuntos
Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Masculino , Ratos , Linhagem Celular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Ratos Wistar , Relação Estrutura-Atividade , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia
8.
J Sep Sci ; 47(12): e2400099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38937914

RESUMO

The chromatographic behavior of the selected compounds was studied under conditions of hydrophilic interaction liquid chromatography (HILIC). The effect of mobile phase composition on the retention in different chromatographic systems was systematically examined using high-performance thin-layer chromatography. The sorbents of different polarity and adsorption characteristics were selected and mixtures of water and organic solvents of various compositions, from pure water to pure organic solvent were used as mobile phases. Increasing the amount of water in the mobile phase leads to a conversion of the separation mechanism, and the retention curves have a characteristic "U" shape. The conversion between the adsorption and partition mechanisms is most likely continuous and depends on the chemical nature of separated substances, the stationary phase as well as on organic component of the mobile phase. Silica gel can be considered the most suitable stationary phase for the systematic investigation of the chromatographic behavior of the test compounds, whereas acetonitrile was the most suitable solvent. The obtained results contribute to the understanding of the dominant separation mechanism, the type, and the intensity of the interactions between separated substances with both stationary and mobile phases. Besides, the lipophilicity parameters obtained under HILIC conditions were evaluated and correlated with the calculated values.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Cromatografia em Camada Fina , Solventes/química , Adsorção , Cromatografia Líquida
9.
Food Microbiol ; 121: 104498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637069

RESUMO

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Assuntos
Bacillus , Lauratos , Monoglicerídeos , Monoglicerídeos/farmacologia , Monoglicerídeos/química , Ácidos , Ácidos Láuricos/farmacologia , Carbono
10.
Biomed Chromatogr ; 38(7): e5867, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558037

RESUMO

Fourteen donepezil-like acetylcholinesterase (AChE) inhibitors from our library were analyzed using reversed-phase thin-layer chromatography to assess their lipophilicity and blood-brain barrier permeability. Compounds possessed N-benzylpiperidine and N,N-diarylpiperazine moieties connected via a short carboxamide or amine linker. Retention parameters RM 0, b, and C0 were considered as the measures of lipophilicity. Besides, logD of the investigated compounds was determined chromatographically using standard compounds with known logPow and logD values at pH 11. Experimentally obtained lipophilicity parameters correlated well with in silico generated results, and the effect of the nature of the linker between two pharmacophores and substituents on the arylpiperazine part of the molecule was observed. As a result of drug-likeness analysis, both Lipinski's rule of five and Veber's rule parameters were determined, suggesting that examined compounds could be potential candidates for further drug development. Principal component analysis was performed to obtain an insight into a grouping of compounds based on calculated structural descriptors, experimentally obtained values of lipophilicity, and AChE inhibitory activity.


Assuntos
Inibidores da Colinesterase , Cromatografia de Fase Reversa , Donepezila , Interações Hidrofóbicas e Hidrofílicas , Piperidinas , Cromatografia em Camada Fina/métodos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Cromatografia de Fase Reversa/métodos , Donepezila/química , Donepezila/farmacologia , Piperidinas/química , Indanos/química , Barreira Hematoencefálica/metabolismo , Análise de Componente Principal
11.
Chem Biodivers ; 21(1): e202301213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38109053

RESUMO

Ecotoxicological risk assessments form the foundation of regulatory decisions for industrial chemicals used in various sectors. In this study, a multi-target-QSAR model established by a backpropagation neural network trained with the Levenberg-Marquardt (LM) algorithm was used to construct a statistically robust and easily interpretable Mt-QSAR model with high external predictability for the simultaneous prediction of the environmental fate in form of octanol-water partition coefficient (LogP), (BCF) and acute oral toxicity in mammals and birds (LD50rat ) and (LD50bird ) for a wide range of chemical structural classes of insecticides. Principal component analysis was performed on descriptors selected by the SW-MLR method, and the selected PCs were used for constructing the SW-MLR-PCA-ANN model. The developed well-trained model (RMSE=0.83, MPE=0.004, CCC=0.82, IIC=0.78, R2 =0.69) was statistically robust as indicated by the external validation parameters (RMSE=0.93, MPE=0.008, CCC=0.77, IIC=0.68, R2 =0.61). The AD of the developed Mt-QSAR model was also defined to identify the most reliable predictions. Finally, the missing values in the dataset for the aforementioned targets were predicted using the constructed Mt-QSAR model. The proposed approach can be used for simultaneous prediction of the environmental fate of new insecticides, especially ones that haven't been tested yet.


Assuntos
Inseticidas , Relação Quantitativa Estrutura-Atividade , Animais , Inseticidas/toxicidade , Mamíferos
12.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675682

RESUMO

Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.


Assuntos
Relação Quantitativa Estrutura-Atividade , Humanos , Albumina Sérica Humana/química , Algoritmos , Modelos Lineares , Estrutura Molecular , Fosfolipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Cromatografia/métodos
13.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611961

RESUMO

Lipophilicity is one of the most important properties of compounds required to estimate the absorption, distribution, and transport in biological systems, in addition to solubility, stability, and acid-base nature. It is crucial in predicting the ADME profile of bioactive compounds. The study assessed the usefulness of computational and chromatographic methods (thin-layer chromatography in a reversed-phase system, RP-TLC) for estimating the lipophilicity of 21 newly synthesized compounds belonging to diquinothiazines and quinonaphthiazines. In order to obtain reliable values of the relative lipophilicities of diquinothiazines and quinonaphthiazines, the partition coefficients obtained using different algorithms such as AlogPs, AClogP, AlogP, MLOGP, XLOGP2, XLOGP3, logP, and ClogP were compared with the chromatographic RM0 values of all the tested compounds measured by the experimental RP-TLC method (logPTLC). Additionally, logPTLC values were also correlated with other descriptors, as well as the predicted ADME and drug safety profiling parameters. The linear correlations of logPTLC values of the tested compounds with other calculated molecular descriptors such as molar refractivity, as well as ADME parameters (Caco-2 substrates, P-gp inhibitors, CYP2C19, and CYP3A4) generally show poor predictive power. Therefore, in silico ADME profiling can only be helpful at the initial step of designing these new candidates for drugs. The compliance of all discussed diquinothiazines and naphthoquinothiazines with the rules of Lipinski, Veber, and Egan suggests that the tested pentacyclic phenothiazine analogs have a chance to become therapeutic drugs, especially orally active drugs.


Assuntos
Algoritmos , Citocromo P-450 CYP3A , Humanos , Células CACO-2 , Cromatografia em Camada Fina , Projetos de Pesquisa
14.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257299

RESUMO

In this study, we present the synthesis of five novel compounds by combining flurbiprofen with various substituted 2-phenethylamines. The synthesized derivatives underwent comprehensive characterization using techniques such as 1H- and 13C-NMR spectroscopy, UV-Vis spectroscopy, and high-resolution mass spectrometry (HRMS). Detailed HRMS analysis was performed for each of these newly created molecules. The biological activities of these compounds were assessed through in vitro experiments to evaluate their potential as anti-inflammatory and antioxidant agents. Furthermore, the lipophilicity of these derivatives was determined, both theoretically using the cLogP method and experimentally through partition coefficient (RM) measurements. To gain insights into their binding affinity, we conducted an in silico analysis of the compounds' interactions with human serum albumin (HSA) using molecular docking studies. Our findings reveal that all of the newly synthesized compounds exhibit significant anti-inflammatory and antioxidant activities, with results statistically comparable to the reference compounds. Molecular docking studies further explain the observed in vitro results, shedding light on the molecular mechanisms behind their biological activities. Using in silico method, toxicity was calculated, resulting in LD50 values. Depending on the administration route, the novel flurbiprofen derivatives show lower toxicity compared to the standard flurbiprofen.


Assuntos
Flurbiprofeno , Humanos , Flurbiprofeno/farmacologia , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Compostos Radiofarmacêuticos
15.
Trends Biochem Sci ; 44(3): 241-257, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563724

RESUMO

Stabilized peptide therapeutics have the potential to hit currently undruggable targets, dramatically expanding the druggable genome. However, major obstacles to their development include poor intracellular delivery, rapid degradation, low target affinity, and membrane toxicity. With the emergence of multiple stabilization techniques and screening technologies, the high efficacy of various bioactive peptides has been demonstrated in vitro, albeit with limited success in vivo. We discuss here the chemical and pharmacokinetic barriers to achieving in vivo efficacy, analyze the characteristics of FDA-approved peptide drugs, and propose a developmental tool that considers the molecular properties of stabilized peptides in a comprehensive and quantitative manner to achieve the necessary rates for in vivo delivery to the target, efficacy, and ultimately clinical translation.


Assuntos
Peptídeos Cíclicos/química , Peptídeos/química , Animais , Desenho de Fármacos , Humanos
16.
Biol Chem ; 404(6): 601-606, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36867068

RESUMO

Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.


Assuntos
Nitratos , Dermatopatias , Animais , Tolerância a Medicamentos , Nitratos/farmacologia , Nitratos/uso terapêutico , Pele , Dermatopatias/tratamento farmacológico , Suínos , Cicatrização , Células HaCaT , Humanos
17.
Toxicol Appl Pharmacol ; 475: 116634, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482255

RESUMO

Numerous epidemiological studies report an increased risk of developing prostate cancer in patients with melanoma and an increased risk of developing melanoma in patients with prostate cancer. Based on our previous studies demonstrating the high anticancer activity of thiosemicarbazides with a phenoxy moiety, we designed nineteen phenoxyacetylthiosemicarbazide derivatives and four of them acting as potential dual-ligands for both cancers. All of the compounds were characterized by their melting points and 1H, 13C NMR and IR spectra. For selected compounds, X-ray investigations were carried out to confirm the synthesis pathway, identify the tautomeric form and intra- and intermolecular interaction in the crystalline state. The conformational preferences and electronic structure of molecules were investigated by theoretical calculation method. Lipophilicity of compounds (log kw) was determined using isocratic reversed phase/high pressure liquid chromatography RP-18. For the obtained compounds, in vitro tests were carried out on four melanoma cell lines (A375, G-361, SK-MEL2, SK-MEL28), four prostate cancer cell lines (PC-3, DU-145, LNCaP, VcaP) and a normal human fibroblast cell line (BJ). The most active compounds turned out to be F6. Cell cycle analysis, apoptosis detection, CellROX staining and mitochondrial membrane potential analysis were performed for the most sensitive cancer cells treated with most active compounds. DSC analysis was additionally performed for selected compounds to determine their purity, compatibility, and thermal stability. The process of prooxidation was proposed as a potential mechanism of anticancer activity.


Assuntos
Antineoplásicos , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Antineoplásicos/uso terapêutico , Ligantes , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose , Melanoma/tratamento farmacológico , Proliferação de Células
18.
Chemistry ; 29(7): e202202939, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374157

RESUMO

Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P(CF2-CH2) values, that is, the change in lipophilicity, observed for the CH2 /CF2 replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.6-1.4 units, which for most cases, is far above the values expected for such a replacement. Moreover, for compounds holding more than one such gem-difunctional moiety, the effect is nearly additive, so one can switch from a hydrophilic compound to a lipophilic one in a limited number of H/F exchanges. DFT studies of some of these systems revealed that polarity, conformational preference as well as charge distributions are strongly affected by such hydrogen to fluorine atom substitution. The pronounced effects described, are a result of the interplay between changes in polarity, H-bond basicity and molecular volume, which were obtained with a very low 'cost' in terms of molecular weight or steric effects and may have a great potential for implementation in various fields of chemical sciences.

19.
Chemistry ; 29(47): e202301383, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37318940

RESUMO

A comprehensive study of physicochemical properties (pKa , LogP, and intrinsic microsomal clearance) within the series of mono- and difluorinated azetidine, pyrrolidine, and piperidine derivatives was performed. While the number of fluorine atoms and their distance to the protonation center were the major factors defining the compound's basicity, both pKa and LogP values were affected considerably by the conformational preferences of the corresponding derivatives. For example, features of "Janus face" (facially polarized) cyclic compounds (i. e., unusually high hydrophilicity) were identified for cis-3,5-difluoropiperidine, preferring a diaxial conformation. Intrinsic microsomal clearance measurements demonstrated high metabolic stability of the compounds studied (with a single exception of the 3,3-difluoroazetidine derivative). According to pKa - LogP plots, the title compounds provide a valuable extension of the fluorine-containing (e. g., fluoroalkyl-substituted) saturated heterocyclic amine series as building blocks for rational optimization studies in early drug discovery.


Assuntos
Aminas , Flúor , Flúor/química , Aminas/química , Fenômenos Químicos , Conformação Molecular , Descoberta de Drogas
20.
Chemphyschem ; 24(24): e202300548, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37788220

RESUMO

Lipophilicity is a physicochemical property with wide relevance in drug design, computational biology, food, environmental and medicinal chemistry. Lipophilicity is commonly expressed as the partition coefficient for neutral molecules, whereas for molecules with ionizable groups, the distribution coefficient (D) at a given pH is used. The logDpH is usually predicted using a pH correction over the logPN using the pKa of ionizable molecules, while often ignoring the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . In this work, we studied the impact of ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ on the prediction of both the experimental lipophilicity of small molecules and experimental lipophilicity-based applications and metrics such as lipophilic efficiency (LipE), distribution of spiked drugs in milk products, and pH-dependent partition of water contaminants in synthetic passive samples such as silicones. Our findings show that better predictions are obtained by considering the apparent ion pair partitioning. In this context, we developed machine learning algorithms to determine the cases that P I app ${P_{\rm{I}}^{{\rm{app}}} }$ should be considered. The results indicate that small, rigid, and unsaturated molecules with logPN close to zero, which present a significant proportion of ionic species in the aqueous phase, were better modeled using the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . Finally, our findings can serve as guidance to the scientific community working in early-stage drug design, food, and environmental chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA