Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(3): 549-563.e19, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29937226

RESUMO

Chromatin regulators play a broad role in regulating gene expression and, when gone awry, can lead to cancer. Here, we demonstrate that ablation of the histone demethylase LSD1 in cancer cells increases repetitive element expression, including endogenous retroviral elements (ERVs), and decreases expression of RNA-induced silencing complex (RISC) components. Significantly, this leads to double-stranded RNA (dsRNA) stress and activation of type 1 interferon, which stimulates anti-tumor T cell immunity and restrains tumor growth. Furthermore, LSD1 depletion enhances tumor immunogenicity and T cell infiltration in poorly immunogenic tumors and elicits significant responses of checkpoint blockade-refractory mouse melanoma to anti-PD-1 therapy. Consistently, TCGA data analysis shows an inverse correlation between LSD1 expression and CD8+ T cell infiltration in various human cancers. Our study identifies LSD1 as a potent inhibitor of anti-tumor immunity and responsiveness to immunotherapy and suggests LSD1 inhibition combined with PD-(L)1 blockade as a novel cancer treatment strategy.


Assuntos
Retrovirus Endógenos/genética , Histona Desmetilases/metabolismo , Complexo de Inativação Induzido por RNA/genética , Animais , Linhagem Celular Tumoral , Cromatina , Terapia Combinada , Regulação da Expressão Gênica/genética , Histona Desmetilases/genética , Humanos , Imunidade Celular , Imunoterapia , Interferon Tipo I , Células MCF-7 , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , RNA de Cadeia Dupla/genética , Linfócitos T
2.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016475

RESUMO

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Assuntos
Interferon Tipo I , Viroses , Humanos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação , Epigênese Genética , Imunidade Inata
3.
Genes Dev ; 35(15-16): 1142-1160, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244292

RESUMO

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R ) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451-/- ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.


Assuntos
Células-Tronco Embrionárias , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(7): e2307150121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315842

RESUMO

Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.


Assuntos
Quinase 9 Dependente de Ciclina , Histona Desmetilases , Tolerância Imunológica , Ubiquitina-Proteína Ligases , Humanos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Mol Cell ; 69(3): 398-411.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395062

RESUMO

The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability. In vivo genetic analysis using Lsd1SA/SA mice with ablation of LSD1 phosphorylation and chemical approaches in wild-type mice with inhibition of PKCα or LSD1 activity show attenuated sepsis-induced inflammatory lung injury and mortality. Together, we demonstrate that the PKCα-LSD1-NF-κB signaling cascade is crucial for epigenetic control of the inflammatory response, and targeting this signaling could be a powerful therapeutic strategy for systemic inflammatory diseases, including sepsis.


Assuntos
Histona Desmetilases/metabolismo , Proteína Quinase C/metabolismo , Animais , Núcleo Celular/metabolismo , Epigênese Genética/genética , Histona Desmetilases/genética , Inflamação/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549269

RESUMO

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Assuntos
Histonas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Lisina/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Metiltransferases/metabolismo , Histona Desmetilases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo
7.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36573494

RESUMO

Machine learning including modern deep learning models has been extensively used in drug design and screening. However, reliable prediction of molecular properties is still challenging when exploring out-of-domain regimes, even for deep neural networks. Therefore, it is important to understand the uncertainty of model predictions, especially when the predictions are used to guide further experiments. In this study, we explored the utility and effectiveness of evidential uncertainty in compound screening. The evidential Graphormer model was proposed for uncertainty-guided discovery of KDM1A/LSD1 inhibitors. The benchmarking results illustrated that (i) Graphormer exhibited comparative predictive power to state-of-the-art models, and (ii) evidential regression enabled well-ranked uncertainty estimates and calibrated predictions. Subsequently, we leveraged time-splitting on the curated KDM1A/LSD1 dataset to simulate out-of-distribution predictions. The retrospective virtual screening showed that the evidential uncertainties helped reduce false positives among the top-acquired compounds and thus enabled higher experimental validation rates. The trained model was then used to virtually screen an independent in-house compound set. The top 50 compounds ranked by two different ranking strategies were experimentally validated, respectively. In general, our study highlighted the importance to understand the uncertainty in prediction, which can be recognized as an interpretable dimension to model predictions.


Assuntos
Histonas , Lisina , Estudos Retrospectivos , Incerteza , Histona Desmetilases/metabolismo
8.
Stem Cells ; 42(2): 128-145, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38152966

RESUMO

Neurogenesis begins with neural stem cells undergoing symmetric proliferative divisions to expand and then switching to asymmetric differentiative divisions to generate neurons in the developing brain. Chromatin regulation plays a critical role in this switch. Histone lysine-specific demethylase LSD1 demethylates H3K4me1/2 and H3K9me1/2 but the mechanisms of its global regulatory functions in human neuronal development remain unclear. We performed genome-wide ChIP-seq of LSD1 occupancy, RNA-seq, and Histone ChIP-seq upon LSD1 inhibition to identify its repressive role in human neural stem cells. Novel downstream effectors of LSD1 were identified, including the Notch signaling pathway genes and human-neural progenitor-enriched extracellular matrix (ECM) pathway/cell adhesion genes, which were upregulated upon LSD1 inhibition. LSD1 inhibition led to decreased neurogenesis, and overexpression of downstream effectors mimicked this effect. Histone ChIP-seq analysis revealed that active and enhancer markers H3K4me2, H3K4me1, and H3K9me1 were upregulated upon LSD1 inhibition, while the repressive H3K9me2 mark remained mostly unchanged. Our work identifies the human-neural progenitor-enriched ECM pathway/cell adhesion genes and Notch signaling pathway genes as novel downstream effectors of LSD1, regulating neuronal differentiation in human neural stem cells.


Assuntos
Histonas , Células-Tronco Neurais , Humanos , Adesão Celular/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética
9.
EMBO Rep ; 24(2): e55843, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36573342

RESUMO

Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.


Assuntos
Hidrocefalia , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Hidrocefalia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105803

RESUMO

BRD4 is well known for its role in super-enhancer organization and transcription activation of several prominent oncogenes including c-MYC and BCL2 As such, BRD4 inhibitors are being pursued as promising therapeutics for cancer treatment. However, drug resistance also occurs for BRD4-targeted therapies. Here, we report that BRD4 unexpectedly interacts with the LSD1/NuRD complex and colocalizes with this repressive complex on super-enhancers. Integrative genomic and epigenomic analyses indicate that the BRD4/LSD1/NuRD complex restricts the hyperactivation of a cluster of genes that are functionally linked to drug resistance. Intriguingly, treatment of breast cancer cells with a small-molecule inhibitor of BRD4, JQ1, results in no immediate activation of the drug-resistant genes, but long-time treatment or destabilization of LSD1 by PELI1 decommissions the BRD4/LSD1/NuRD complex, leading to resistance to JQ1 as well as to a broad spectrum of therapeutic compounds. Consistently, PELI1 is up-regulated in breast carcinomas, its level is negatively correlated with that of LSD1, and the expression level of the BRD4/LSD1/NuRD complex-restricted genes is strongly correlated with a worse overall survival of breast cancer patients. Together, our study uncovers a functional duality of BRD4 in super-enhancer organization of transcription activation and repression linking to oncogenesis and chemoresistance, respectively, supporting the pursuit of a combined targeting of BRD4 and PELI1 in effective treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Feminino , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Células MCF-7 , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética
11.
Med Res Rev ; 44(2): 833-866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014919

RESUMO

Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.


Assuntos
Lisina , Neoplasias , Humanos , Lisina/uso terapêutico , Histona Desmetilases/metabolismo , Histona Desmetilases/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Histonas , Neoplasias/tratamento farmacológico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
12.
Dev Biol ; 501: 92-103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353106

RESUMO

During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.


Assuntos
Células-Tronco , Peixe-Zebra , Animais , Camundongos , Diferenciação Celular , Hematopoese/genética , Histona Desmetilases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Prostate ; 84(10): 909-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619005

RESUMO

INTRODUCTION: Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS: Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS: Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS: Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.


Assuntos
Histona Desmetilases , Neoplasias de Próstata Resistentes à Castração , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Benzamidas , Piperazinas , Triazóis
14.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34373913

RESUMO

Neutrophils are the most abundant vertebrate leukocytes and they are essential to host defense. Despite extensive investigation, the molecular network controlling neutrophil differentiation remains incompletely understood. GFI1 is associated with several myeloid disorders, but its role and the role of its co-regulators in granulopoiesis and pathogenesis are far from clear. Here, we demonstrate that zebrafish gfi1aa deficiency induces excessive neutrophil progenitor proliferation, accumulation of immature neutrophils from the embryonic stage, and some phenotypes similar to myelodysplasia syndrome in adulthood. Both genetic and epigenetic analyses demonstrate that immature neutrophil accumulation in gfi1aa-deficient mutants is due to upregulation of cebpa transcription. Increased transcription was associated with Lsd1-altered H3K4 methylation of the cebpa regulatory region. Taken together, our results demonstrate that Gfi1aa, Lsd1 and cebpa form a regulatory network that controls neutrophil development, providing a disease progression-traceable model for myelodysplasia syndrome. Use of this model could provide new insights into the molecular mechanisms underlying GFI1-related myeloid disorders as well as a means by which to develop targeted therapeutic approaches for treatment.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hematopoese/genética , Histona Desmetilases/metabolismo , Neutrófilos/citologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Embrião não Mamífero , Epigênese Genética , Células Precursoras de Granulócitos/citologia , Células Precursoras de Granulócitos/metabolismo , Histona Desmetilases/genética , Neutrófilos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
15.
Mol Carcinog ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990091

RESUMO

Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.

16.
FASEB J ; 37(7): e23031, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342917

RESUMO

It has been demonstrated that hair follicle stem cells (HFSCs) can contribute to wound closure and repair. However, the specific mechanism remains unclear due to the complexity of the wound repair process. Lysine-specific demethylase 1 (LSD1), an important gene for the regulation of stem cell differentiation, has been reported to participate in wound healing regulation. Heat shock protein 90 (HSP90), a chaperone protein, is recently discovered to be a driver gene for wound healing. This study explored the molecular mechanisms by which the binding between LSD1 and HSP90 affects the role of HFSCs during skin wound healing. Following bioinformatics analysis, the key genes acting on HFSCs were identified. The expression of LSD1, HSP90, and c-MYC was found to be upregulated in differentiated HFSCs. Analysis of their binding affinity revealed that LSD1 interacted with HSP90 to enhance the stability of the transcription factor c-MYC. Lactate dehydrogenase A (LDHA) has been documented to be essential for HFSC activation. Therefore, we speculate that LDHA may induce the differentiation of HFSCs through glucose metabolism reprogramming. The results showed that c-MYC activated LDHA activity to promote glycolytic metabolism, proliferation, and differentiation of HFSCs. Finally, in vivo animal experiments further confirmed that LSD1 induced skin wound healing in mice via the HSP90/c-MYC/LDHA axis. From our data, we conclude that LSD1 interacting with HSP90 accelerates skin wound healing by inducing HFSC glycolytic metabolism, proliferation, and differentiation via c-MYC/LDHA axis.


Assuntos
Folículo Piloso , Células-Tronco , Animais , Camundongos , Folículo Piloso/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Lactato Desidrogenase 5/metabolismo , Células-Tronco/metabolismo , Cicatrização/fisiologia
17.
Bioorg Med Chem ; 101: 117651, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401457

RESUMO

Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.


Assuntos
Antineoplásicos , Histona Desmetilases , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica , Histona Desmetilases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia
18.
Bioorg Med Chem ; 100: 117632, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340642

RESUMO

Small molecule-based selective cancer cell-targeting can be a desirable anticancer therapeutic strategy. Aiming to discover such small molecules, we previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) that selectively release anticancer agents in cancer cells where lysine-specific demethylase 1 (LSD1) is overexpressed. In this work, we designed PCPA-entinostat conjugates for selective cancer cell targeting. PCPA-entinostat conjugate 12 with a 4-oxybenzyl group linker released entinostat in the presence of LSD1 in in vitro assays and selectively inhibited the growth of cancer cells in preference to normal cells, suggesting the potential of PCPA-entinostat conjugates as novel anticancer drug delivery small molecules.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas , Histona Desmetilases , Neoplasias/tratamento farmacológico , Piridinas , Ciclopropanos/química
19.
Bioorg Chem ; 147: 107336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636431

RESUMO

In this series we report the structure-based design, synthesis and anticancer activity evaluation of a series of eighteen cyclopropylamine containing cyanopyrimidine derivatives. The computational predictions of ADMET properties revealed appropriate aqueous solubility, high GI absorption, no BBB permeability, no Lipinski rule violations, medium total clearance and no mutagenic, tumorigenic, irritant and reproductive toxic risks for most of the compounds. Compounds VIIb, VIIi and VIIm emerged as the most potent anticancer agents among all compounds evaluated against 60 cancer cell lines through the one-dose (10 µM) sulforhodamine B assay. Further, the multiple dose cell viability studies against cancer cell lines MOLT-4, A549 and HCT-116 revealed results consistent with the one-dose assay, besides sparing normal cell line HEK-293. The three potent compounds also displayed potent LSD1 inhibitory activity with IC50 values of 2.25, 1.80 and 6.08 µM. The n-propyl-thio/isopropyl-thio group bonded to the pyrimidine ring and unsubstituted/ electron donating group (at the para- position) attached to the phenyl ring resulted in enhanced anticancer activity. However, against leukemia cancer, the electron donating isopropyl group remarkably enhanced anti-cancer activity. Our findings provide important leads, which merit further optimization to result in better cancer therapeutics.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desmetilases , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Linhagem Celular Tumoral , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos
20.
Bioorg Chem ; 150: 107603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968905

RESUMO

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.


Assuntos
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA