RESUMO
Myelosuppression is a prevalent and potentially life-threatening side effect during chemotherapy. As the main active component of ginseng, 20(S)-protopanaxadiol (PPD) is capable of relieving myelosuppression by restoring hematopoiesis and immunity. In this study, PPD was encapsulated in human albumin nanoparticles (PPD-HSA NPs) by nanoparticle albumin-bound (Nab) technology for intramuscular injection to optimize its pharmacokinetic properties and promote recovery of myelosuppression. The prepared PPD-HSA NPs had a particle size of about 280 nm with a narrow size distribution. PPD dispersed as an amorphous state within the PPD-HSA NPs, and the NPs exhibited in vitro sustained release behavior. PPD-HSA NPs showed a favorable pharmacokinetic profile with high absolute bioavailability, probably due to the fact that NPs entered into the blood circulation via lymphatic circulation and were eliminated slowly. In vivo distribution experiments demonstrated that PPD-HSA NPs were mainly distributed in the liver and spleen, but a strong fluorescence signal was also found in the inguinal lymph node, indicating drug absorption via a lymph route. The myelosuppressive model was established using cyclophosphamide as the inducer. Pharmacodynamic studies confirmed that PPD-HSA NPs were effective in promoting the level of white blood cells. Moreover, the neutrophil and lymphocyte counts were significantly higher in the PPD-HSA NPs group compared with the control group. This preliminary investigation revealed that PPD-HSA NPs via intramuscular administration may be an effective intervention strategy to alleviate myelosuppression.
RESUMO
CONTEXT: Zeaxanthin is a yellowcoloured dietary carotenoid widely recognized as an essential component of the macula. It exerts blue light filtering and antioxidant activities, offering eye health and vision benefits. OBJECTIVE: This study explores the oral absorption and systemic disposition of zeaxanthin from biopharmaceutical and pharmacokinetic perspectives. MATERIALS AND METHODS: In vivo intravenous (5 and 10 mg/kg) and intraportal (5 mg/kg) pharmacokinetic studies were performed to determine intrinsic tissueblood partition coefficient, elimination pathway, and hepatic clearance, of zeaxanthin in rats. Moreover, in vitro physicochemical property test, in situ closed loop study, in vivo oral pharmacokinetic study (20 and 100 mg/kg), and in vivo lymphatic absorption study (100 mg/kg) were conducted to investigate the gut absorption properties of zeaxanthin and assess the effects of several lipids on the lymphatic absorption of zeaxanthin in rats. RESULTS: Zeaxanthin exhibited poor solubility (≤144 ng/mL) and stability (6.0-76.9% of the initial amount remained at 24 h) in simulated gut luminal fluids. Gut absorption of zeaxanthin occurred primarily in the duodenum, but the major fraction (≥84.7%) of the dose remained unabsorbed across the entire gut tract. Considerable fractions of intravenous zeaxanthin accumulated in the liver, lung, and spleen (21.3, 11.7, and 2.0%, respectively). It was found that the liver is the major eliminating organ of zeaxanthin, accounting for 53.5-90.1% of the total clearance process (hepatic extraction ratio of 0.623). DISCUSSION AND CONCLUSIONS: To our knowledge, this is the first systematic study to report factors that determine the oral bioavailability and systemic clearance of zeaxanthin.
Assuntos
Antioxidantes , Carotenoides , Animais , Ratos , Zeaxantinas/metabolismo , Disponibilidade Biológica , Carotenoides/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismoRESUMO
BACKGROUND: Dietary sphingolipids have various biofunctions, including skin barrier improvement and anti-inflammatory and anti-carcinoma properties. Long-chain bases (LCBs), the essential backbones of sphingolipids, are expected to be important for these bioactivities, and they vary structurally between species. Given these findings, however, the absorption dynamics of each LCB remain unclear. METHODS: In this study, five structurally different LCBs were prepared from glucosylceramides (GlcCers) with LCB 18:2(4E,8Z);2OH and LCB 18:2(4E,8E);2OH moieties derived from konjac tuber (Amorphophallus konjac), from GlcCers with an LCB 18(9Me):2(4E,8E);2OH moiety derived from Tamogi mushroom (Pleurotus cornucopiae var. citrinopileatus), and from ceramide 2-aminoethyphosphonate with LCB 18:3(4E,8E,10E);2OH moiety and LCB 18(9Me):3(4E,8E,10E);2OH moiety derived from giant scallop (Mizuhopecten yessoensis), and their absorption percentages and metabolite levels were analyzed using a lymph-duct-cannulated rat model via liquid chromatography tandem mass spectrometry (LC/MS/MS) with a multistage fragmentation method. RESULTS: The five orally administered LCBs were absorbed and detected in chyle (lipid-containing lymph) as LCBs and several metabolites including ceramides, hexosylceramides, and sphingomyelins. The absorption percentages of LCBs were 0.10-1.17%, depending on their structure. The absorption percentage of LCB 18:2(4E,8Z);2OH was the highest (1.17%), whereas that of LCB 18:3(4E,8E,10E);2OH was the lowest (0.10%). The amount of sphingomyelin with an LCB 18:2(4E,8Z);2OH moiety in chyle was particularly higher than sphingomyelins with other LCB moieties. CONCLUSIONS: Structural differences among LCBs, particularly geometric isomerism at the C8-C9 position, significantly affected the absorption percentages and ratio of metabolites. This is the first report to elucidate that the absorption and metabolism of sphingolipids are dependent on their LCB structure. These results could be used to develop functional foods that are more readily absorbed.
Assuntos
Trato Gastrointestinal/metabolismo , Linfa/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo , Animais , Ceramidas/química , Ceramidas/metabolismo , Cromatografia Líquida , Suplementos Nutricionais , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Linfa/efeitos dos fármacos , Pleurotus/genética , Ratos , Esfingolipídeos/química , Esfingolipídeos/genética , Esfingomielinas/química , Espectrometria de Massas em TandemRESUMO
PURPOSE: To provide a comprehensive and up-to-date overview focusing on the extent of lymphatic transport of drugs following intestinal absorption and to summarize available data on the impact of molecular weight, lipophilicity, formulation and prandial state. METHODS: Literature was searched for in vivo studies quantifying extent of lymphatic transport of drugs after enteral dosing. Pharmacokinetic data were extracted and summarized. Influence of molecular weight, log P, formulation and prandial state was analyzed using relative bioavailability via lymph (FRL) as the parameter for comparison. The methods and animal models used in the studies were also summarized. RESULTS: Pharmacokinetic data on lymphatic transport were available for 103 drugs. Significantly higher FRL [median (IQR)] was observed in advanced lipid based formulations [54.4% (52.0)] and oil solutions [38.9% (60.8)] compared to simple formulations [2.0% (27.1)], p < 0.0001 and p = 0.004, respectively. Advanced lipid based formulations also provided substantial FRL in drugs with log P < 5, which was not observed in simple formulations and oil solutions. No relation was found between FRL and molecular weight. There were 10 distinct methods used for in vivo testing of lymphatic transport after intestinal absorption so far. CONCLUSION: Advanced lipid based formulations provide superior ability to increase lymphatic absorption in drugs of various molecular weights and in drugs with moderate to low lipophilicity.
Assuntos
Transporte Biológico/fisiologia , Composição de Medicamentos/estatística & dados numéricos , Sistema Linfático/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Bases de Dados Bibliográficas , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Humanos , Absorção Intestinal , Modelos Animais , Preparações Farmacêuticas , FarmacocinéticaRESUMO
Raloxifene hydrochloride (RH) suffers from low oral bioavailability due to its low water-solubility and first-pass metabolism. Therefore, a novel phospholipid complex of RH (RHPC) and a matrix dispersion based on phospholipid complex (RHPC-MD) were successfully prepared and optimized. Several methods were used to validate the formation of RHPC and RHPC-MD, such as differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, particle size, and zeta potential, meanwhile, their octanol-water partition coefficient, solubility, and dissolution in vitro were also evaluated. To investigate the absorption mechanism of RHPC in vivo, the RHPC was administered to the chylomicron flow blockage rat model. Interestingly, as we expected, a significant reduction in RHPC absorption (67%) (**p< .01) in presence of cycloheximide (CXI) inhibitor was observed, thus confirming the RHPC could be absorbed by lymphatic transport in vivo. Pharmacokinetic studies revealed that the relative oral bioavailability of RHPC as well as RHPC-MD was 223% and 329%, respectively, when comparing with the commercial RH tablets. These outcomes suggested that the current study provided an attractive formulation to enhance the oral bioavailability of RH and stimulated to further research the absorption mechanism of RHPC in vivo.
Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Fosfolipídeos/química , Cloridrato de Raloxifeno/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacocinética , Varredura Diferencial de Calorimetria , Quilomícrons/biossíntese , Cicloeximida/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Modelos Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Tamanho da Partícula , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacocinética , Ratos , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Solubilidade , Comprimidos , Difração de Raios XRESUMO
Self-emulsifying drug delivery systems (SES) were developed to improve oral bioavailability of asenapine maleate (ASM), an antipsychotic drug with challenging amphiphobic nature and extensive pre-systemic metabolism. ASM-SES was prepared by choosing the proportion of oil, surfactant, co-surfactant from constructed phase diagram. The in vitro and ex vivo evaluation was done. In vivo evaluation was done through pharmacokinetic and pharmacodynamic studies. Role of lymphatic absorption was studied by lymphatic absorption inhibition study. A formulation consisting of 9.9%, 59.4%, 29.7% and 1% of oil, surfactant, co-surfactant, and drug respectively was considered as optimized formulation. After various evaluation test, the globule size and zeta potential for optimized formulation (SES4) were found to be 137.9 nm and -28.8 mV respectively. A maximum of 99.64 ± 0.16% of ASM was released from SES4 in 60 minutes of time. The flux (ex vivo study) increased by 2.33 folds, which prove the enhanced release and permeation of ASM when loaded into SES. The animals administered with SES4 showed higher activity and good pharmacodynamic response than the control and ASM-Suspension, which may be due to the greater availability of the drug. The maximum pharmacodynamic response was observed at the tmax determined by Pharmacokinetic studies. The bioavailability increased by 1.64 folds with 16.55 ± 3.11% as extend of lymphatic absorption (r = 0.9732). Good in vitro in vivo correlation was observed. ASM-SES is a novel approach to effectively deliver ASM and improve the oral bioavailability.
Assuntos
Antipsicóticos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Administração Oral , Animais , Antipsicóticos/química , Antipsicóticos/farmacocinética , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Química Farmacêutica , Galinhas , Dibenzocicloeptenos , Avaliação Pré-Clínica de Medicamentos , Emulsões , Excipientes/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Camundongos , Tamanho da Partícula , Ratos Wistar , Solubilidade , TensoativosRESUMO
Herbivores employ numerous strategies to reduce their exposure to toxic plant secondary chemicals (PSCs). However, the physiological mechanisms of PSC absorption have not been extensively explored. In particular, the absorption of PSCs via intestinal lymphatic absorption has been largely overlooked in herbivores, even though this pathway is well recognized for pharmaceutical uptake. Here, we investigated for the first time whether PSCs might be absorbed by lymphatic transport. We fed woodrats (Neotoma albigula) diets with increasing concentrations of terpene-rich juniper (Juniperus monosperma) either with or without a compound that blocks intestinal lymphatic absorption (Pluronic L-81). Woodrats consuming diets that contained the intestinal lymphatic absorption blocker exhibited increased food intakes and maintained higher body masses on juniper diets. Our study represents the first demonstration that PSCs may be absorbed by intestinal lymphatic absorption. This absorption pathway has numerous implications for the metabolism and distribution of PSCs in the systemic circulation, given that compounds absorbed via lymphatic transport bypass first-pass hepatic metabolism. The area of lymphatic transport of PSCs represents an understudied physiological pathway in plant-herbivore interactions.
Assuntos
Herbivoria , Absorção Intestinal , Juniperus/metabolismo , Sistema Linfático/metabolismo , Sigmodontinae/metabolismo , Animais , Transporte BiológicoRESUMO
Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool. SALNs were characterised for physico-chemical properties (particle size, surface charge, encapsulation efficiency, in vitro stability, and heparin leakage), as well as in vitro cytotoxicity by methyl thiazole tetrazolium (MTT) assay and cell internalisation in CaCo-2, a cell line model used as an indirect indication of intestinal lymphatic absorption. SALNs of about 180 nm, which are stable in suspension and have a high encapsulation efficiency (>90%) were obtained. SALNs were able to stabilise the heparin coating of Fe@hepa, which are typically unstable in physiological environments. Moreover, SALNs-Fe@hepa showed no cytotoxicity, although their ability to be internalised into CaCo-2 cells was highlighted by confocal microscopy analysis. Therefore, the results indicated that SALNs can be considered as a promising tool to orally deliver theranostic Fe@hepa into the lymphatic circulation, although further in vivo studies are needed to comprehend further potential applications.
Assuntos
Portadores de Fármacos/química , Compostos Férricos/química , Heparina/química , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Gorduras/química , Compostos Férricos/farmacologia , Glicerídeos/química , Heparina/metabolismo , Humanos , Absorção Intestinal , Modelos Biológicos , Nanopartículas/ultraestrutura , Óleos/química , Tamanho da Partícula , Eletricidade Estática , Propriedades de SuperfícieRESUMO
PURPOSE: Determine the pharmacokinetics of insulin peglispro (BIL) in 5/6-nephrectomized rats and study the absorption in lymph duct cannulated (LDC) sheep. METHODS: BIL is insulin lispro modified with 20-kDa linear PEG at lysine B28 increasing the hydrodynamic size to 4-fold larger than insulin lispro. Pharmacokinetics of BIL and insulin lispro after IV administration were compared in 5/6-nephrectomized and sham rats. BIL was administered IV or SC into the interdigital space of the hind leg, and peripheral lymph and/or serum samples were collected from both LDC and non-LDC sheep to determine pharmacokinetics and absorption route of BIL. RESULTS: The clearance of BIL was similar in 5/6-nephrectomized and sham rats, while the clearance of insulin lispro was 3.3-fold slower in 5/6-nephrectomized rats than in the sham rats. In non-LDC sheep, the terminal half-life after SC was about twice as long vs IV suggesting flip-flop pharmacokinetics. In LDC sheep, bioavailability decreased to <2%; most of the dose was absorbed via the lymphatic system, with 88% ± 19% of the dose collected in the lymph after SC administration. CONCLUSION: This work demonstrates that increasing the hydrodynamic size of insulin lispro through PEGylation can impact both absorption and clearance to prolong drug action.
Assuntos
Hipoglicemiantes/química , Insulina Lispro/química , Linfa/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Injeções Intravenosas , Injeções Subcutâneas , Insulina Lispro/administração & dosagem , Insulina Lispro/farmacocinética , Cinética , Masculino , Peso Molecular , Ratos Sprague-Dawley , OvinosRESUMO
The aim of this work was to study the lymphatic absorption characteristics of gastric hydrolysates and intestinal hydrolysates of eicosapentaenoic acid-enriched phosphoethanolamine plasmalogen (EPA-pPE) with focusing on the fate of EPA and vinyl ether bonds in the lymph fluid using lymphatic intubation and lipidomics. The results showed that the EPA peak occurred earlier in the gastric (1.5 h) and intestinal (1 h) hydrolysates than in the EPA-pPE group (3 h) with EPA peak content being 2.03 and 1.46 times higher, suggesting pre-hydrolysis contributed to lymphatic absorption. Further, duodenal injection of gastric hydrolysates sn2 EPA-lysoPE produced higher levels of EPA-LPC, PC, PE, and PG. Meanwhile, intestinal hydrolysates free EPA and sn1 lyso-pPE enriched the sn1 + 2 + 3 TG (20:5_20:5_20:5) and increased the vinyl ether bond-containing lipids, such as PE (18:0p_18:0) and PE (18:0p_20:4). This study provides insight into dietary molecular structures of EPA and plasmalogen.
RESUMO
In this study, a novel cabazitaxel solid self-emulsifying drug delivery system (CTX S-SEDDS) was developed by solvent evaporation and liquid-solid compression technology, which overcame the limitations of the traditional SEDDS and improved the oral bioavailability. From the results of solubility, pseudo-ternary phase diagram, and single-factor analysis, Tween 80 (surfactant), Tricaprylin (oil), and Glyceryl monooleate (oil) with the ratio of 30:55:15 showed optimized particle size (140.87 nm), short emulsification and high cabazitaxel (CTX) loading capacity (50 mg·g-1). Based on the liquid-solid compression mathematical model, Syloid XDP3050 was determined as carrier material and Syloid 244FP as coating material. The prepared CTX S-SEDDS showed excellent flowability, tabletability, and reconstitution property. In vivo pharmacokinetics in rats demonstrated the absolute bioavailability of CTX S-SEDDS (17.27 %) was significantly enhanced compared with CTX solution (1.69 %), which was close to that of CTX-SEDSS (20.48 %). Lymphatic absorption was verified by in vitro imaging to be an important absorption route for self-emulsifying preparations. These results suggested that CTX S-SEDDS could enhance oral bioavailability of poorly water-soluble drug cabazitaxel while avoiding SEDDS limitations and harnessing the dual advantages of solid and liquid preparations.
Assuntos
Sistemas de Liberação de Medicamentos , Taxoides , Ratos , Animais , Emulsões/farmacocinética , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Administração OralRESUMO
Intraperitoneal injection of dihydromyricetin (DMY) has shown promising potential in the treatment of alcoholism. However, its therapeutic effect is limited due to its low solubility, poor stability, and high gut-liver first-pass metabolism, resulting in very low oral bioavailability. In this study, we developed a DMY-loaded self-emulsifying drug delivery system (DMY-SEDDS) to enhance the oral bioavailability and anti-alcoholism effect of DMY. DMY-SEDDS improved the oral absorption of DMY by facilitating lymphatic transport. The area under the concentration-time curve (AUC) of DMY in the DMY-SEDDS group was 4.13-fold higher than in the DMY suspension group. Furthermore, treatment with DMY-SEDDS significantly enhanced the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver of mice (p < 0.05). Interestingly, DMY-SEDDS also increased ADH activity in the stomach of mice with alcoholism (p < 0.01), thereby enhancing ethanol metabolism in the gastrointestinal tract and reducing ethanol absorption into the bloodstream. As a result, the blood alcohol concentration of mice with alcoholism was significantly decreased after DMY-SEDDS treatment (p < 0.01). In the acute alcoholism mice model, compared to saline treatment, DMY-SEDDS prolonged the onset of LORR (loss of righting reflex) (p < 0.05) and significantly shortened the duration of LORR (p < 0.01). Additionally, DMY-SEDDS treatment significantly reduced gastric injury in acute alcoholism mice. Collectively, these findings demonstrate the potential of DMY-SEDDS as a treatment in the treatment of alcoholism.
RESUMO
The high variability in subcutaneous bioavailability of protein therapeutics is poorly understood, contributing to critical delays in patient access to new therapies. Preclinical animal and in vitro models fail to provide a physiologically relevant testbed to parse potential contributors to human bioavailability, therefore new strategies are necessary. Here, we present a microphysiological model of the human hypodermal vasculature at the injection site to study the interactions of administered protein therapeutics within the microenvironment that influence subcutaneous bioavailability. Our model combines human dermal endothelial cells, fibroblasts, and adipocytes, self-assembled into three-dimensional, perfusable microvessels that express relevant extracellular matrix. We demonstrate the utility of the model for measurement of biophysical parameters within the hypodermal microenvironment that putatively impact protein kinetics and distribution at the injection site. We propose that microphysiological models of the subcutaneous space have applications in preclinical development of protein therapeutics intended for subcutaneous administration with optimal bioavailability.
Assuntos
Células Endoteliais , Animais , Humanos , Preparações Farmacêuticas , Disponibilidade BiológicaRESUMO
The gut cell wall is considered an impenetrable barrier to orally administrated polysaccharides. We recently reported a selective lymphatic route for Radix Astragali polysaccharide RAP to enter Peyer's patches (PPs) to trigger immune responses. However, how RAP enters PPs is unclear. Herein, we screened the intestinal epithelial cells of mice and found that the follicle-associated epithelium cells were specifically bound with FITC-RAP. Further studies in vitro and in vivo revealed that RAP was efficiently transported by microfold (M) cells. We also confirmed that M cell-transported RAP directly contacted dendritic cells. More importantly, for the first time, we verified this interesting M cell-mediated transcytosis of RAP in the human distal ileum. Mechanistically, we identified M cells to be the transporter cells that independently deliver RAP into the lymphatic system to trigger immune responses. This interesting transcytosis mechanism might apply to many other immunomodulatory polysaccharides orally dosed to human body.
Assuntos
Astrágalo , Nódulos Linfáticos Agregados , Células Epiteliais/metabolismo , Epitélio , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/farmacologiaRESUMO
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease with unknown cause. It mainly affects joints and, without proper treatment, negatively impacts their movement, causes painful deformities, and reduces the patients' quality of life. Current treatment options consist of various types of disease-modifying antirheumatic drugs (DMARDs), however 20-30% of patients are partially resistant to them. Therefore, development of new drugs is necessary. Possible option are compounds exhibiting their action via endocannabinoid system, which plays an important role in pain and inflammation modulation. One such compound - cannabidiol (CBD) has already been shown to attenuate synovitis in animal model of RA in in vivo studies. However, it has low bioavailability due to its low water solubility and lipophilicity. This issue can be addressed by preparation of a lipid containing formulation targeting lymphatic system, another route of absorption in the body. Materials and Methods: CBD-containing emulsion was prepared by high-shear homogenization and its droplet size distribution was analysed by optical microscopy. The relative oral bioavailability compared to oil solution as well as total availability of CBD were assessed in a cross-over study in rats and absorption of CBD via lymphatic system was observed. The effect of CBD on the animal model of RA was determined. Results: Compared to oil solution, the emulsion exhibited higher absolute oral bioavailability. Significant lymphatic transport of CBD was observed in all formulations and the concentrations in lymph were calculated. The therapeutic effect of CBD on RA was confirmed as an improvement in clinical symptoms as well as morphological signs of disease activity were observed during the study. Conclusion: In this work, we prepared a simple stable emulsion formulation, determined the pharmacokinetic parameters of CBD and calculated its absolute bioavailability in rats. Moreover, we successfully tested the pharmaceutical application of such a formulation and demonstrated the positive effect of CBD in an animal model of RA.
RESUMO
Plasmalogens, functional glycerophospholipids with biological roles in the human body, are associated with various diseases. Although a variety of saturated and/or unsaturated fatty acids in plasmalogens are presumed to have different functions in the human body, there are limited reports validating such functions of plasmalogens. In this study, we focused on the bacterial plasmalogen derived from Selenomonas ruminantium subsp. lactilytica (NBRC No. 103574) with different main species of hydrocarbon chains at the sn-1 position and shorter fatty acids at the sn-2 position than animal plasmalogens. Optimum culture conditions of S. ruminantium for high-yield production of plasmalogens, such as pH and the concentration of caproic acid, were investigated under anaerobic conditions using a 2-L scale jar fermenter. The obtained plasmalogen mainly consisted of the ethanolamine plasmalogen (PlsEtn). The molar ratios of PlsEtn species obtained from S. ruminantium, at sn-1/sn-2 positions, were p16:1/14:0 (68.4%), p16:1/16:1 (29.2%), p16:1/16:0 (0.7%), p16:1/15:0 (0.3%), and p17:1/14:0 (0.3%). Subsequently, duodenal infusion of the emulsion carrying the lipid extracted from S. ruminantium was carried out in lymph duct-cannulated rats. In the lymphatic plasmalogen of rats, the level of PlsEtns with molar ratios p16:1/14:0 and p16:1/16:1, the main species of plasmalogens from S. ruminantium, increased gradually until 3-4 h after lipid injection and then gradually decreased. In addition, the level of PlsEtns with p16:1/20:4 and p16:1/22:6 rapidly increased, peaking at 1-1.5 h and 1.5-2 h after lipid injection, respectively. The increase in the number of PlsEtns with p16:1/20:4 and p16:1/22:6 suggested that 20:4 and 22:6, the main fatty acids at the sn-2 position in the rat lymphatic plasmalogen, were preferentially re-esterified at the sn-2 position, regardless of the types of hydrocarbon chains at the sn-1 position. Thus, we showed that bacterial PlsEtns with "unnatural" structures against rats could be absorbed into the lymph. Our findings provide insights into the association between the chemical structure of plasmalogens and their biological functions in humans.
RESUMO
INTRODUCTION: Oral administration of cannabinoids is a convenient route of administration in many cases. To enhance the poor and variable bioavailability of cannabinoids, selected strategies utilizing proper delivery systems have been designed. Low solubility in the GI aqueous media is the first and most critical barrier. Thereafter, cannabinoids can reach the systemic blood circulation via the portal vein that is associated with significant hepatic first pass metabolism (FPM) or bypass it via lymphatic absorption. AREAS COVERED: The solubility obstacle of cannabinoids is mainly addressed with lipid-based formulations such as self-nanoemulsifying drug delivery systems (SNEDDS). Certain lipids are used to overcome the solubility issue. Surfactants and other additives in the formulation have additional impact on several barriers, including dictating the degree of lymphatic bioavailability and hepatic FPM. Gastro-retentive formulation is also plausible. EXPERT OPINION: Comparison of the role of the same SNEDDS formulation, cyclosporine vs. cannabinoids, when used to elevate the oral bioavailability of different compounds, is presented. It illustrates some similarities and major mechanistic differences obtained by the same SNEDDS. Thus, the different influence over the absorption pathway illuminates the importance of understanding the absorption mechanism and its barriers to properly select appropriate strategies to achieve enhanced oral bioavailability.
Assuntos
Canabinoides , Nanopartículas , Administração Oral , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Humanos , Tamanho da Partícula , SolubilidadeRESUMO
Genistein (GEN) is a soy-derived isoflavone that exhibits several biological effects, such as neuroprotective activity and the prevention of several types of cancer and cardiovascular disease. However, due to its poor water solubility and the extensive first-pass metabolism, the oral bioavailability of GEN is limited. In this work, solid lipid nanoparticles (SLN) were developed to preferentially reach the intestinal lymphatic vessels, avoiding the first-pass metabolism of GEN. GEN-loaded SLN were obtained by a hot homogenization process, and the formulation parameters were chosen based on already formulated studies. The nanoparticles were characterized, and the preliminary in vitro chylomicron formation was evaluated. The cell uptake of selected nanocarriers was studied on the Caco-2 cell line and intestinal mucosa. The SLN, characterized by a spherical shape, showed an average diameter (about 280 nm) suitable for an intestinal lymphatic uptake, good stability during the testing time, and high drug loading capacity. Furthermore, the intestinal mucosa and Caco-2 cells were found to uptake SLN. The approximately two-fold increase in particle size suggested a possible interaction between SLN and the lipid components of chylomicrons like phospholipid; therefore, the results may support the potential for these SLN to improve oral GEN bioavailability via intestinal lymphatic absorption.
RESUMO
The objective of this study was to obtain data on pathways of absorption of the synthetic pyrethroids deltamethrin (DLM) and cis-permethrin (CPM) following oral administration to rats. Adult male Sprague-Dawley rats with cannulated mesenteric lymph ducts and hepatic portal veins were given single doses of either 5 mg/kg DLM or 60 mg/kg CPM via the duodenum and lymph and portal blood samples collected for up to 300 min. The pyrethroid dosing vehicles (5 mL/kg body weight) were either corn oil or glycerol formal. Levels of DLM and CPM in lymph and portal blood samples were determined by high-performance liquid chromatography-mass spectrometry-mass spectrometry. Over the time period studied, levels of both DLM and CPM following administration in either corn oil or glycerol formal were greater in lymph than in portal blood. Lymphatic uptake of both DLM and CPM was enhanced following dosing in glycerol formal than in corn oil. The results of this study suggest that after oral administration to rats, these two pyrethroids are predominantly absorbed via the lymphatic system rather than via portal blood. The data obtained in this study thus support a recently developed physiologically-based pharmacokinetic (PBPK) model to evaluate age-related differences in pyrethroid pharmacokinetics in the rat, where it was assumed that absorption of pyrethroids was predominantly via lymphatic uptake.
Assuntos
Inseticidas/farmacocinética , Linfa/metabolismo , Nitrilas/farmacocinética , Permetrina/farmacocinética , Veia Porta/metabolismo , Piretrinas/farmacocinética , Administração Oral , Animais , Transporte Biológico , Inseticidas/sangue , Masculino , Nitrilas/sangue , Permetrina/sangue , Piretrinas/sangue , Ratos Sprague-DawleyRESUMO
Nanotechniques show significant merits in terms of improving the oral bioavailability of poorly water-soluble drugs. However, the mechanisms behind are not clear yet. For instance, what is the contribution of free drug released during nanogranule transcytosis, as well as the impact of drug transporter and chylomicron? To address these issues, sorafenib nanogranules (SFN-NGs) were prepared as model by the high-gravity antisolvent precipitation method which approaches to practical mass production. Then, a multiaspect study on the transcytosis mechanism of SFN-NGs was conducted in Caco-2 cells and rats, including paracellular transport, endocytosis, intracellular trafficking, transmembrane pathway, as well as the involvement of transporter and chylomicron. Pharmacokinetics in rats demonstrated an obvious superiority of SFN-NGs in oral absorption and lymphatic transfer over SFN crude drugs. Different from free SFN, SFN-NGs could be internalized in cells in early stage by caveolin/lipid raft or clathrin induced endocytosis, and transported intactly through the polarized cell monolayers. While in late stage, transporter-mediated transport of free SFN began to play a vital role on the transmembrane of SFN-NGs. No paracellular transport of SFN-NGs was found, and the trafficking of SFN-NGs was affected by the pathway of ER-Golgi complexes. Surprisedly, the intracellular free SFN was the main source of transmembrane for SFN-NGs, which was entrapped into chylomicrons and then secreted into the extracellular space. Generally, the findings in current study may shed light on the absorption mechanism of oral nanoformulations.