Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 437(2): 114016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537746

RESUMO

Glioblastoma (GBM) is the most aggressive and life-threatening brain tumor, characterized by its highly malignant and recurrent nature. DNA damage-regulated autophagy modulator 1 (DRAM-1) is a p53 target gene encoding a lysosomal protein that induces macro-autophagy and damage-induced programmed cell death in tumor growth. However, the precise mechanisms underlying how DRAM-1 affects tumor cell proliferation through regulation of lysosomal function and autophagic flux stability remain incompletely understood. We found that DRAM-1 expressions were evidently down-regulated in high-grade glioma and recurrent GBM tissues. The upregulation of DRAM-1 could increase mortality of primary cultured GBM cells. TEM analysis revealed an augmented accumulation of aberrant lysosomes in DRAM-1-overexpressing GBM cells. The assay for lysosomal pH and stability also demonstrated decreasing lysosomal membrane permeabilization (LMP) and impaired lysosomal acidity. Further research revealed the detrimental impact of lysosomal dysfunction, which impaired the autophagic flux stability and ultimately led to GBM cell death. Moreover, downregulation of mTOR phosphorylation was observed in GBM cells following upregulation of DRAM-1. In vivo and in vitro experiments additionally illustrated that the mTOR inhibitor rapamycin increased GBM cell mortality and exhibited an enhanced antitumor effect.


Assuntos
Glioblastoma , Proteínas de Membrana , Humanos , Autofagia/fisiologia , Proliferação de Células , Glioblastoma/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Cancer Sci ; 113(8): 2716-2726, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657693

RESUMO

Lysosomes function as the digestive system of a cell and are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and progrowth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca2+ level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca2+ elevation was due to Ca2+ release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. As the Ca2+ release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for central nervous system (CNS) diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in nontransformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.


Assuntos
Glioblastoma , Glioma , Autofagia , Cloroquina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Lisossomos/metabolismo , Macroautofagia
3.
Chem Biol Interact ; 315: 108902, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31747558

RESUMO

Cancer has emerged as the main cause of the highest rate of mortality in the world. Drugs used in cancer, although, show some beneficial effects on cancerous organs, demonstrate side effects on other normal tissues. On the other hand, anticancer peptides, being effective on target tissues, should be safe and less harmful on healthy organs, since peptides have several advantages, i.e., high activity, specificity, affinity, being less immunogenic and not accumulate in the body. In the present work, analogues of Longicalcynin A, a naturally occurring anticancer cyclopeptide, were synthesized and evaluated their cytotoxicity in order to gain information from structure-activity relationships of the such cyclopeptides which may lead to find novel and safer anticancer peptide compound(s) to be used in clinic. Peptides were prepared by the solid-phase peptide synthesis method using trityl-resin. Peptide cyclization was performed in liquid phase. To study anticancer activity of the peptide analogues of Longicalycinin A, several methods including MTT, flow cytometry analysis and Lysosomal membrane integrity assay were employed using two cell lines HepG2 and HT-29. Fibroblast cells were used to control the safety of the synthesized cyclopeptides on normal cells. Two cyclopeptides 11 and 17 with the sequences of cyclo-(Thr-Val-Pro-Phe-Ala) and cyclo-(Phe-Ser-Pro-Phe-Ala), respectively were cytotoxic against the colon as well as hepatic cancer cells with safety profile against fibroblast cells, probably with the mechanism of apoptosis as lysosomal membrane integrity damaged. These cyclopeptides showed to be more favorable compounds better than Longicalycinin A and good candidates to develop cyclopeptides as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Células HT29 , Células Hep G2 , Humanos , Relação Estrutura-Atividade
4.
Iran J Pharm Res ; 17(3): 995-1007, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127822

RESUMO

Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PFOS cytotoxicity toward human lymphocytes. The main goal of this investigation was to find out the mechanisms underlying the cytotoxic effect of PFOS toward human lymphocytes using accelerated cytotoxicity mechanisms screening (ACMS) technique. Human lymphocytes were isolated from blood of healthy donors using Ficoll-paquePLUS standard method. Cell viability was determined following 12 h of incubation of human lymphocytes with 100-500 µM PFOS. Our results showed that IC50 concentration (163.5 µM) of PFOS reduced viability of human lymphocytes approximately 50% via increased ROS formation, lipid peroxidation, glutathione depletion and damage to cell sub organelles such as mitochondria and lysosomes. Besides, in this study we demonstrated involvement of cellular proteolysis and activation of caspase-3 in PFOS induced lymphocyte cytotoxicity. We finally concluded that at environmentally related concentration, PFOS can induce toxic effect toward human lymphocytes through induction of oxidative stress and damage to cell sub organelles.

5.
ACS Appl Mater Interfaces ; 10(20): 16964-16976, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29726253

RESUMO

Nanotechnology has emerged as the most successful strategy for targeting drug payloads to tumors with the potential to overcome the problems of low concentration at the target site, nonspecific distribution, and untoward toxicities. Here, we synthesized a novel polymeric conjugate comprising chondroitin sulfate A and polyethylene glycol using carbodiimide chemistry. We further employed this glycoconjugate possessing the propensity to provide stability, stealth effects, and tumor targeting via CD44 receptors, all in one, to develop a nanocrystalline system of docetaxel (DTX@CSA-NCs) with size < 200 nm, negative zeta potential, and 98% drug content. Taking advantage of the enhanced permeability and retention effect coupled with receptor mediated endocytosis, the DTX@CSA-NCs cross the peripheral tumor barrier and penetrate deeper into the cells of tumor mass. In MDA-MB-231 cells, this enhanced cellular uptake was observed to exhibit a higher degree of cytotoxicity and arrest in the G2 phase in a time dependent fashion. Acting via a mitochondrial-lysosomotropic pathway, DTX@CSA-NCs disrupted the membrane potential and integrity and outperformed the clinically used formulation. Upon intravenous administration, the DTX@CSA-NCs showed better pharmacokinetic profile and excellent 4T1 induced tumor inhibition with significantly less off target toxicity. Thus, this glycoconjugate stabilized nanocrystalline formulation has the potential to take nano-oncology a step forward.


Assuntos
Glicoconjugados/química , Antineoplásicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Membranas Mitocondriais , Nanopartículas , Taxoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA