Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23387, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193649

RESUMO

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Assuntos
Exossomos , MicroRNAs , Acidente Vascular Cerebral , Animais , Camundongos , Humanos , Células Endoteliais , Microglia , Receptor 4 Toll-Like/genética , NF-kappa B , Fator de Necrose Tumoral alfa , Encéfalo , Hipóxia , Oxigênio , Citocinas , MicroRNAs/genética
2.
J Neurophysiol ; 131(4): 598-606, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380844

RESUMO

The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Camundongos , Animais , Interleucina-10/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL
3.
FASEB J ; 37(10): e23177, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688589

RESUMO

Synovial inflammation and fibrosis are important pathological changes associated with osteoarthritis (OA). Herein, we investigated if nintedanib, a drug specific for pulmonary fibrosis, plays a positive role in osteoarthritic synovial inflammation and fibrosis. We assessed the effect of nintedanib on osteoarthritic synovial inflammation and fibrosis in a mouse model of OA created by destabilization of the medial meniscus and a macrophage M1 polarization model created by stimulating RAW264.7 cells with lipopolysaccharide. Histological staining showed that daily gavage administration of nintedanib significantly alleviated articular cartilage degeneration, reduced the OARSI score, upregulated matrix metalloproteinase-13 and downregulated collagen II expression, and significantly reduced the synovial score and synovial fibrosis in a mouse OA model. In addition, immunofluorescence staining showed that nintedanib significantly decreased the number of M1 macrophages in the synovium of a mouse model of OA. In vitro results showed that nintedanib downregulated the phosphorylation levels of ERK, JNK, p38, PI3K, and AKT while inhibiting the expression of macrophage M1 polarization marker proteins (CD86, CD80, and iNOS). In conclusion, this study suggests that nintedanib is a potential candidate for OA treatment. The mechanisms of action of nintedanib include the inhibition of M1 polarization in OA synovial macrophages via the MAPK/PI3K-AKT pathway, inhibition of synovial inflammation and fibrosis, and reduction of articular cartilage degeneration.


Assuntos
Osteoartrite , Fibrose Pulmonar , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Osteoartrite/tratamento farmacológico , Inflamação/tratamento farmacológico , Macrófagos , Modelos Animais de Doenças
4.
Neurochem Res ; 49(9): 2556-2572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888828

RESUMO

A subarachnoid hemorrhage (SAH) is life-threatening bleeding into the subarachnoid space that causes brain damage. Growing evidence has suggested that melatonin provides neuroprotection following SAH. Exploring the mechanisms underlying melatonin-mediated neuroprotection contributes to its clinical application in SAH. The plasma and cerebrospinal fluid (CSF) were collected from SAH patients, and SAH mice were established via pre-chiasmatic injection. Circodz3 expression, levels of IL-1ß and TNF-α, brain water content, neurological and beam-waling scores were determined. Ferroptosis was evaluated by analyzing levels of iron, lipid ROS, MDA, and GSH. The colocalization of circodz3 and Iba-1 was analyzed by immunofluorescence staining. Interaction of circodz3 and HuR was determined with RNA pull-down and RNA immunoprecipitation assays. Herein, we found that circodz3 was highly abundant in SAH patients and mice. Colocalization of circodz3 and Iba-1 in the left hemisphere of SAH mice suggested the implication of circodz3 in regulating microglia activation following SAH. Melatonin alleviated brain edema, neurological impairment, and microglia activation and inhibited circodz3 expression in SAH mice. Moreover, melatonin inhibited M1 polarization, oxidative stress and ferroptosis and restrained circodz3 expression in primary microglia following SAH. These effects were abrogated by circodz3 overexpression. Circodz3 knockdown inhibited ferroptosis and M1 polarization of BV2 microglia after SAH. Circodz3 interacted with HuR to facilitate ß-Trcp1-mediated ubiquitination and degradation, thus restraining the expression of SLC7A11 and GPX4. Collectively, melatonin exerted neuroprotection following SAH via inhibiting ferroptosis and M1 polarization through the circodz3/HuR axis. Our study suggests potential application of melatonin in the treatment of SAH.


Assuntos
Proteína Semelhante a ELAV 1 , Ferroptose , Melatonina , Camundongos Endogâmicos C57BL , Microglia , Hemorragia Subaracnóidea , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Humanos , Masculino , Proteína Semelhante a ELAV 1/metabolismo , RNA Circular/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pessoa de Meia-Idade
5.
Ecotoxicol Environ Saf ; 269: 115779, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056124

RESUMO

Mercury (Hg) is a serious metal environmental pollutant. HgCl2 exposure causes pyroptosis. When macrophages are severely stimulated, they often undergo M1 polarization and release inflammatory factors. However, the mechanisms by which mercuric chloride exposure induces macrophage apoptosis, M1 polarization, and inflammatory factors remain unclear. HD11 cells were exposed to different concentrations of Hg chloride (180, 210 and 240 nM HgCl2). The results showed that mercury chloride exposure up-regulated ROS, C-Nrf2 and its downstream factors (NQO1 and HO-1), and down-regulated N-Nrf2. In addition, the expressions of focal death-related indicators (Caspase-1, NLRP3, GSDMD, etc.), M1 polarization marker CD86 and inflammatory factors (TNF-α, IL-1ß) increased, and the above changes were related to mercury. Oxidative stress inhibitor (NAC) can block ROS/ NrF2-mediated oxidative stress, inhibit mercury-induced pyroptosis and M1 polarization, and effectively reduce the release of inflammatory factors. The addition of Vx-765 to inhibit pyroptosis can effectively alleviate M1 polarization of HD11 cells and reduce the expression of inflammatory factors. HgCl2 mediates pyroptosis of HD11 cells by regulating ROS/Nrf2/NLRP3, promoting M1 polarization and the release of inflammatory factors.


Assuntos
Mercúrio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Galinhas/metabolismo , Cloretos , Inflamação/metabolismo , Mercúrio/efeitos adversos , Mercúrio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais
6.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542070

RESUMO

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Assuntos
Aterosclerose , Proteína C-Reativa , Humanos , Proteína C-Reativa/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais/metabolismo , Células U937 , Aterosclerose/metabolismo
7.
J Transl Med ; 21(1): 427, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386574

RESUMO

BACKGROUND: Inflammation and immune dysfunction with classically activated macrophages(M1) infiltration are important mechanisms in the progression of atherosclerosis (AS). Dynamin-related protein 1 (DRP1)-dependent mitochondrial fission is a novel target for alleviating inflammatory diseases. This study aimed to investigate the effects of DRP1 inhibitor Mdivi-1 on AS. METHODS: ApoE-/- mice were fed with a high-fat diet supplemented with or without Mdivi-1. RAW264.7 cells were stimulated by ox-LDL, pretreated with or without MCC950, Mito-TEMPO, or Mdivi-1. The burden of plaques and foam cell formation were determined using ORO staining. The blood lipid profles and inflammatory cytokines in serum were detected by commercial kits and ELISA, respectively. The mRNA expression of macrophage polarization markers, activation of NLRP3 and the phosphorylation state of DRP1 were detected. Mitochondrial reactive oxygen species (mito-ROS), mitochondrial staining, ATP level and mitochondrial membrane potential were detected by mito-SOX, MitoTracker, ATP determination kit and JC-1 staining, respectively. RESULTS: In vivo, Mdivi-1 reduced the plaque areas, M1 polarization, NLRP3 activation and DRP1 phosphorylation at Ser616. In vitro, oxidized low-density lipoprotein (ox-LDL) triggered M1 polarization, NLRP3 activation and abnormal accumulation of mito-ROS. MCC950 and Mito-TEMPO suppressed M1 polarization mediated foam cell formation. Mito-TEMPO significantly inhibited NLRP3 activation. In addition, Mdivi-1 reduced foam cells by inhibiting M1 polarization. The possible mechanisms responsible for the anti-atherosclerotic effects of Mdivi-1 on reducing M1 polarization were associated with suppressing mito-ROS/NLRP3 pathway by inhibiting DRP1 mediated mitochondrial fission. In vitro, similar results were observed by DRP1 knockdown. CONCLUSION: Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviated atherogenesis via suppressing mito-ROS/NLRP3-mediated M1 polarization, indicating DRP1-dependent mitochondrial fission as a potential therapeutic target for AS.


Assuntos
Aterosclerose , Indenos , Animais , Camundongos , Dinâmica Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Dinaminas , Furanos , Trifosfato de Adenosina
8.
J Transl Med ; 21(1): 225, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978075

RESUMO

BACKGROUND: Chimeric antigen receptor macrophage (CAR-M) therapy is a novel cancer immunotherapy approach that integrates CAR structure and macrophage functions. CAR-M therapy has shown unique and impressive antitumor effects in immunotherapy for solid tumors. However, the polarization state of macrophages can affect the antitumor effect of CAR-M. We hypothesized that the antitumor activity of CAR-Ms may be further improved after inducing M1-type polarization. METHODS: In this report, we constructed a novel HER2-targeting CAR-M, which was composed of humanized anti-HER2 scFv, CD28 hinge region and FcγRI transmembrane domain and intracellular domain. Phagocytosis, tumor-killing capacities, and cytokine release of CAR-Ms were detected with or without M1-polarization pretreatment. Several syngeneic tumor models were used to monitor the in vivo antitumor activity of M1-polarized CAR-Ms. RESULTS: After polarization with LPS combined with interferon-γ in vitro, we found that the phagocytic and tumor-killing capacities of CAR-Ms against target cells were significantly enhanced. The expression of costimulatory molecules and proinflammatory cytokines was also significantly increased after polarization. By establishing several syngeneic tumor models in vivo, we also demonstrated that infusing polarized M1-type CAR-Ms could effectively suppress tumor progression and prolong the survival of tumor-bearing mice with enhanced cytotoxicity. CONCLUSIONS: We demonstrated that our novel CAR-M can effectively eliminate HER2-positive tumor cells both in vitro and in vivo, and M1 polarization significantly enhanced the antitumor ability of CAR-M, resulting in a stronger therapeutic effect in solid cancer immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Imunoterapia , Citocinas/metabolismo , Macrófagos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
9.
BMC Neurosci ; 24(1): 17, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869312

RESUMO

BACKGROUND: Microglial polarization and the subsequent neuroinflammatory response and oxidative stress are contributing factors for traumatic brain injury (TBI) plus hemorrhagic shock (HS) induced brain injury. In the present work, we have explored whether Lysine (K)-specific demethylase 4 A (KDM4A) modulates microglia M1 polarization in the TBI and HS mice. RESULTS: Male C57BL/6J mice were used to investigate the microglia polarization in the TBI + HS model in vivo. Lipopolysaccharide (LPS)-induced BV2 cells were used to examine the mechanism of KDM4A in regulating microglia polarization in vitro. We found that TBI + HS resulted in neuronal loss and microglia M1 polarization in vivo, reflected by the increased level of Iba1, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, malondialdehyde (MDA) and the decreased level of reduced glutathione (GSH). Additionally, KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. Similar to the results in vivo, KDM4A also highly expressed in LPS-induced BV2 cells. LPS-induced BV2 cells exhibited enhanced microglia M1 polarization, and enhanced level of pro-inflammatory cytokines, oxidative stress and reactive oxygen species (ROS), while this enhancement was abolished by the suppression of KDM4A. CONCLUSION: Accordingly, our findings indicated that KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. The important role of KDM4A in TBI + HS-induced inflammatory response and oxidative stress was at least partially realized through regulating microglia M1 polarization.


Assuntos
Lesões Encefálicas Traumáticas , Histona Desmetilases , Microglia , Estresse Oxidativo , Choque Hemorrágico , Animais , Masculino , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa , Histona Desmetilases/metabolismo
10.
FASEB J ; 36(7): e22387, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35696068

RESUMO

Targeting Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2) signaling is regarded as a potential strategy for treating inflammatory diseases. Saponaria officinalis L. is rich in saponin, which include quillaic acid, gypsogenin, saponarin, and hederagenin. We evaluated the pharmacological activity of a Saponaria officinalis extract in THP-1 derived macrophages and RAW264.7 macrophages. TLR4/MyD88 complex formation and downstream signals were investigated by co-immunoprecipitation (Co-IP). In silico docking simulation was conducted to predict binding scores and perform 3D modeling of saponarin-TLR4/MD2 complex. A hexane fraction of Saponaria officinalis (SH) and fr.1 (a sub-fraction 1 of SH) inhibited mitogen-activated protein kinase (MAPK) signaling, nuclear factor kappa b (NF-κB) activity, cytokine production, and the expressions of marker genes specific for M1 polarization. The inhibitory effects of fr.1 and saponarin on TLR4/MyD88 complex formation were observed by western blotting TLR4 co-immunoprecipitated proteins. Saponarin and fr.1 markedly attenuated LPS-induced inflammatory cytokines, thus reducing mortality and morphological abnormality in zebrafish larvae. Finally, docking simulation revealed that saponarin can directly interact with TLR4/MD2 complex to inhibit downstream signalings. Our findings suggest that saponarin reduces downstream inflammatory response by disrupting TLR4/MD2 complex and blocking MyD88-dependent inflammatory signaling.


Assuntos
Saponaria , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Saponaria/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Synapse ; 77(4): e22268, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36941024

RESUMO

Vascular dementia (VaD) is a prevalent cause of dementia after Alzheimer's disease. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-Evs) are critical for VaD treatment. We explored the mechanism of hUCMSC-Evs in VaD. VaD rat model was established by bilateral common carotid artery ligation and hUCMSC-Evs were extracted. VaD rats were injected with Evs through the tail vein. Rat neurological scores, neural behaviors, memory and learning abilities, brain tissue pathological changes, and neurological impairment were evaluated by Zea-Longa method, Morris water maze tests, HE staining, and ELISA (through acetylcholine [ACH] and dopamine [DA] assessment). Microglia M1/M2 polarization was detected by immunofluorescence staining. Pro-/anti-inflammatory factor levels in brain tissue homogenate, oxidative stress-related indicators, and p-PI3K, PI3K, p-AKT, AKT, and Nrf2 protein levels were determined by ELISA, kits, and Western blot. VaD rats were jointly treated with PI3K phosphorylation inhibitor Ly294002 and hUCMSC-Evs. VaD rats manifested increased neurological function injury scores, decreased cognitive function and learning ability, abnormal brain structure, obvious inflammatory infiltration, diminished ACH and DA levels, increased microglial cells and M1-polarized cells, M1/M2 polarization ratio, inflammation, and oxidative stress. hUCMSC-Evs alleviated the neurological damage of VaD rats, inhibited M1 polarization, inflammation, and oxidative stress of microglial cells in brain tissues of VaD rats, and activated the PI3K/AKT/Nrf2 pathway. Ly294002 partially averted the effects of hUCMSC-Evs on microglial polarization, inflammation, and oxidative stress. Briefly, hUCMSC-Evs activated the PI3K/AKT/Nrf2 pathway and inhibited microglial M1 polarization, inflammation, and oxidative stress, thus protecting VaD rat nerve functions.


Assuntos
Demência Vascular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Demência Vascular/terapia , Demência Vascular/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
12.
J Biochem Mol Toxicol ; 37(2): e23245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281492

RESUMO

We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Antagomirs/farmacologia , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/induzido quimicamente , Macrófagos/metabolismo , Modelos Animais de Doenças , NADPH Oxidase 4/genética
13.
J Biochem Mol Toxicol ; 37(12): e23483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503908

RESUMO

This study aimed to investigate the role and mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in liver fibrosis. The liver Kupffer cells (KCs) and mononuclear macrophages (J774A.1) were used as the objects of study to induce M1 polarization with LPS/IFN-γ. After TWEAK intervention, the M1 cell proportion and marker cytokine levels were detected. Thereafter, CD266 expression was silenced, and NLRP3 expression was inhibited by the NLRP3 inhibitor, so as to investigate the impact of TWEAK on M1 polarization of KCs. In addition, the mouse model of liver fibrosis was constructed to observe the influence of TWEAK on mouse liver fibrosis. According to our results, TWEAK promoted M1 polarization of liver KCs and J774A.1 cells, and silencing CD266 expression or treatment with the NLRP3 inhibitor suppressed the effect of TWEAK. In the mouse experiment, it was discovered that after knocking down NLRP3 expression or using NLRP3 inhibitor to antagonize the effect of TWEAK, the mouse liver function and M1 cell level in liver tissues were improved.


Assuntos
Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Necrose Tumoral/metabolismo
14.
J Biochem Mol Toxicol ; 37(7): e23362, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36988325

RESUMO

This work aimed to explore the therapeutic effect and target of sulforaphene (LF) in mice with rheumatoid arthritis (RA). Lipopolysaccharide (LPS) and IFN-γ were added to induce the M1 polarization of SMG cells, and later cells were pretreated with 5 µM and 15 µM LF. M1 cell proportion was detected by flow cytometry (FCM), inflammatory factors were measured by enzyme-linked immunosorbent assay, and protein levels were analyzed by western blotting (WB) assay. Besides, small molecule-protein docking and pull-down assays were carried out to detect the binding of LF to NLRP3. After the knockdown of NLRP3 in SMG cells, the effect of LF was further detected. The RA mouse model was induced with collagen antibody and LPS, after LF intervention, H&E staining was performed to detect the pathological changes in mouse synovial membrane, whereas safranin O-fast green staining was performed to detect cartilage injury, NLRP3 inflammasome and inflammatory factor levels in tissues. LF suppressed M1 polarization of macrophages, reduced M1 cell proportion and inflammatory factor levels, and suppressed the activation of NLRP3 inflammasome. After NLRP3 knockdown, LF did not further suppress the M1 polarization of macrophages. Pull-down assay suggested that LF bound to NLRP3. As revealed by mouse experimental results, LF inhibited bone injury in mice, decreased M1 cell infiltration and inflammatory response in tissues, and inhibited NLRP3 inflammasome expression in tissues. LF targets NLRP3 to suppress the M1 polarization of macrophages and decrease tissue inflammation in RA.


Assuntos
Artrite Reumatoide , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Artrite Reumatoide/tratamento farmacológico
15.
J Nanobiotechnology ; 21(1): 280, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598147

RESUMO

Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.


Assuntos
Artrite , NF-kappa B , Humanos , Animais , Camundongos , Terpenos , Macrófagos
16.
Ecotoxicol Environ Saf ; 259: 115040, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235898

RESUMO

Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.


Assuntos
Cádmio , Ácidos Graxos , Humanos , Ácidos Graxos/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Macrófagos/metabolismo , Fígado/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
17.
Environ Toxicol ; 38(6): 1405-1419, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988289

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) remains an unsolved puzzle in medical circles. Naringenin (NAR) is a flavonoid with cardioprotective potential. The purpose of this article was to discuss the protective mechanism of NAR in MIRI by regulating macrophage polarization. The MIRI mouse model was established and perfused with NAR before surgery. In the in vitro experiment, macrophages RAW264.7 were treated with lipopolysaccharide to induce M1 polarization after pretreatment with NAR. Rescue experiments were carried out to validate the functions of transcription factor EB (TFEB), the NLR pyrin domain containing 3 (NLRP3) inflammasome, and autophagy in macrophage polarization. NAR reduced histopathological injury and infarction of myocardial tissues in MIRI mice, inhibited M1 polarization and promoted M2 polarization of macrophages, diminished levels of pro-inflammatory factors, and augmented levels of anti-inflammatory factors. NAR facilitated TFEB nuclear translocation and inhibited the NLRP3 inflammasome pathway. Silencing TFEB or Nigericin partly nullified the effect of NAR on macrophage polarization. NAR increased autophagosome formation, autophagy flux, and autophagy level. Autophagy inhibitor 3-methyladenine partly invalidated the inhibition of NAR on the NLRP3 inflammasome pathway. In animal experiments, NAR protected MIRI mice through the TFEB-autophagy-NLRP3 inflammasome pathway. Collectively, NAR inhibited NLRP3 inflammasome activation and facilitated M2 macrophage polarization by stimulating TFEB nuclear translocation, thus protecting against MIRI.


Assuntos
Flavanonas , Inflamassomos , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Inflamassomos/metabolismo , Macrófagos , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Transcrição/metabolismo , Flavanonas/farmacologia
18.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175593

RESUMO

Over-activation of Toll-like receptor 4 (TLR4) is the key mechanism in Gram-negative bacterial infection-induced sepsis. SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) inhibits multiple viruses, but whether it plays a role during bacterial invasion remains unelucidated. Monocyte-macrophage specific Samhd1 knockout (Samhd1-/-) mice and Samhd1-/- macrophage cell line RAW264.7 were constructed and used as research models to evaluate the role of SAMHD1 in TLR4-activated inflammation. In vivo, LPS-challenged Samhd1-/- mice showed higher serum inflammatory factors, accompanied with more severe inflammation infiltration and lower survival rate. In vitro, Samhd1-/- peritoneal macrophages had more activated TLR4 pathway upon LPS-stimulation, accompanied with mitochondrial depolarization and dysfunction and a higher tendency to be M1-polarized. These results could be rescued by overexpressing full-length wild-type SAMHD1 or its phospho-mimetic T634D mutant into Samhd1-/- RAW264.7 cells, whereas the mutants, dNTP hydrolase-function-deprived H238A and phospho-ablative T634A, did not exert the same effect. Lastly, co-IP and immunofluorescence assays confirmed that SAMHD1 interacted with an outer mitochondrial membrane-localized protein, voltage-dependent anion channel-1 (VDAC1). SAMHD1 inhibits TLR4-induced acute inflammation and M1 polarization of macrophages by interacting with VDAC1 and maintaining mitochondria function, which outlines a novel regulatory mechanism of TLR signaling upon LPS stimulation.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Camundongos , Inflamação , Lipopolissacarídeos/toxicidade , Macrófagos , Mitocôndrias , Proteína 1 com Domínio SAM e Domínio HD/genética , Receptor 4 Toll-Like/genética
19.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838606

RESUMO

Aloesone is a major metabolic compound in Aloe vera, which has been widely used as a food source and therapeutic agent in several countries. Our recent study demonstrated that aloesone has anti-epileptic effects on glutamate-induced neuronal injury by suppressing the production of reactive oxygen species (ROS). Unless ROS are naturally neutralized by the endogenous antioxidant system, they lead to the activation of inflammation, polarization, and apoptosis. This study aimed to identify the multiple beneficial effects of aloesone and explore its molecular mechanism in macrophages. Hence, the murine macrophage cell line RAW264.7 was pretreated with aloesone and then exposed to lipopolysaccharides (LPS). The results demonstrated that aloesone, within a dosage range of 0.1-100 µM, dramatically decreased the LPS-induced elevation of ROS production, reduced nitric oxide (NO) release, inhibited the M1 polarization of RAW264.7 cells, and prevented cells from entering the LPS-induced early and late phases of apoptosis in a dose-dependent manner. Simultaneously, aloesone significantly decreased the mRNA expression of inflammation-related genes (iNOS, IL-1ꞵ, TNF-α) and increased the expression of antioxidant enzymes (Gpx-1 and SOD-1). The core genes HSP90AA1, Stat3, Mapk1, mTOR, Fyn, Ptk2b, and Lck were closely related to these beneficial effects of aloesone. Furthermore, immunofluorescence staining and flow cytometry data confirmed that aloesone significantly repressed the activation of mTOR, p-mTOR, and HIF-1α induced by LPS and inhibited the protein expression of TLR4, which is the target of LPS. In conclusion, aloesone demonstrated multiple protective effects against LPS-induced oxidative stress, inflammation, M1 polarization, and apoptosis in macrophages, suggesting its potential as a prodrug.


Assuntos
Aloe , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Aloe/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Inflamação/tratamento farmacológico , Estresse Oxidativo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismo , Quinase 2 de Adesão Focal/metabolismo
20.
J Cell Physiol ; 237(10): 3860-3871, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866513

RESUMO

We mainly study the role and regulatory mechanism of double-negative T cells (DNTs) in Alzheimer's disease (AD). The mice splenic DNTs were separated and amplified by Rosettesep antibody adsorption method and Easysep magnetic activated cell sorting. DNTs were intraperitoneally injected into the APP/PS1-AD mice model, which was found to aggravate cognitive impairment in mice. DNTs secreted tumor necrosis factor α (TNF-α) to promote the activation of NLRP3 and the M1 polarization of microglial cells, and silencing NLRP3 with small interfering RNA (siRNA) suppressed the effect of DNTs. DNTs were later cocultured with mice microglial cell line BV2, then fluorescence staining was conducted to detect NLRP3 expression, and enzyme-linked immunoassay was performed to measure the expression of inflammatory factors. Moreover, the levels of NLRP3, ASC, and TNFR1 proteins were detected by western-blot assay, and the proportion of F4/80 + CD11b + M1 cells was detected by flow cytometry. DNTs promoted the M1 polarization of BV2 cells and the activation of NLRP3 inflammasome. After treatment of BV2 cells with NLRP3 inhibitor, the effect of DNTs was weakened. Later, TNF-α siRNA was transfected into DNTs, and it was found that DNTs with TNF-α silencing had markedly weakened polarization effect on BV2 cells. We discovered that the proportion of DNTs increased in AD patients. DNTs secreted TNF-α to regulate the activation of NLRP3 inflammasome and the M1 polarization of microglial cells, thus promoting the central inflammatory response and aggravating the cognitive impairment in AD mice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Animais , Disfunção Cognitiva/metabolismo , Inflamassomos/metabolismo , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , RNA Interferente Pequeno/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA