Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 294(47): 17777-17789, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31611236

RESUMO

The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedron-shaped structure with 12 subunits. Their quaternary structure results from the self-assembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric-state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures has allowed us to describe how the metal ion cofactors modulate the active-site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Coenzimas/metabolismo , Multimerização Proteica , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Aminopeptidases/química , Proteínas de Bactérias/química , Biocatálise , Domínio Catalítico , Sequência Conservada , Estabilidade Enzimática , Íons , Modelos Moleculares , Estrutura Secundária de Proteína , Temperatura
2.
Proteins ; 88(12): 1639-1647, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32673419

RESUMO

The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.


Assuntos
Aminopeptidases/química , Aminopeptidases/metabolismo , Ácido Aspártico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Thermotoga maritima/enzimologia , Aminopeptidases/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
3.
Q J Econ ; 139(2): 993-1049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644929

RESUMO

This paper examines the tradeoffs of monitoring for wasteful public spending. By penalizing unnecessary spending, monitoring improves the quality of public expenditure and incentivizes firms to invest in compliance technology. I study a large Medicare program that monitored for unnecessary healthcare spending and consider its effect on government savings, provider behavior, and patient health. Every dollar Medicare spent on monitoring generated $24-29 in government savings. The majority of savings stem from the deterrence of future care, rather than reclaimed payments from prior care. I do not find evidence that the health of the marginal patient is harmed, indicating that monitoring primarily deters low-value care. Monitoring does increase provider administrative costs, but these costs are mostly incurred upfront and include investments in technology to assess the medical necessity of care.

4.
Curr Protoc ; 1(9): e248, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34529364

RESUMO

This article summarizes the protocols for phosphoramidite chemistry and solid phase synthesis of RNA oligonucleotides containing N4 -methylcytidine (m4 C) and N4 ,N4 -dimethylcytidine (m4 2 C) residues for base-pairing, structural, and enzymatic activity studies. The two key m4 C and m4 2 C phosphoramidite building blocks can be synthesized starting from the partially protected cytidine nucleosides, followed by solid-phase synthesis and HPLC purification of the modified target RNA oligonucleotides. These modified RNA strands are then prepared for base pairing stability, specificity, and structural studies using UV-melting temperature (Tm ) measurements and X-ray crystallography. Functional studies are performed by reverse transcription assays in primer extension reactions employing different enzymes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Chemical synthesis of m4 C phosphoramidite Basic Protocol 2: Synthesis of m4 2 C phosphoramidite Basic Protocol 3: Synthesis and purification of m4 C and m4 2 C containing RNA oligonucleotides.


Assuntos
Citidina , RNA , Pareamento de Bases , Nucleosídeos , Oligonucleotídeos
5.
Front Microbiol ; 11: 281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174898

RESUMO

The composting ecosystem provides a potential resource for finding new microorganisms with the capability for cellulose degradation. In the present study, Congo red method was used for the isolating of thermostable lignocellulose-degrading bacteria from chicken manure compost. A thermophilic strain named as Geobacillus thermodenitrificans Y7 with acid-resident property was successfully isolated and employed to degrade raw switchgrass at 60°C for 5 days, which resulted in the final degradation rates of cellulose, xylan, and acid-insoluble lignin as 18.64, 12.96, and 17.21%, respectively. In addition, GC-MS analysis about aromatic degradation affirm the degradation of lignin by G. thermodenitrificans Y7. Moreover, an endocellulase gene belong to M42 family was successfully cloned from G. thermodenitrificans Y7 and expressed in Escherichia coli BL21. Recombinant enzyme Cel-9 was purified by Ni-NTA column based the His-tag, and the molecular weight determined as 40.4 kDa by SDA-PAGE. The characterization of the enzyme Cel-9 indicated that the maximum enzyme activity was realized at 50°C and pH 8.6 and, Mn2+ could greatly improve the CMCase enzyme activity of Cel-9 at 10 mM, which was followed by Fe2+ and Co2+. Besides, it also found that the ß-1,3-1,4, ß-1,3, ß-1,4, and ß-1,6 glucan linkages all could be hydrolyzed by enzyme Cel-9. Finally, during the application of enzyme Cel-9 to switchgrass, the saccharification rates achieved to 1.81 ± 0.04% and 2.65 ± 0.03% for 50 and 100% crude enzyme, respectively. All these results indicated that both the strain G. thermodenitrificans Y7 and the recombinant endocellulase Cel-9 have the potential to be applied to the biomass industry.

6.
Materials (Basel) ; 12(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717909

RESUMO

In this study, the effect of tempering conditions on microstructure, grain size, and carbide phase compositions of spray-formed high-speed steel after quenching at 1180 °C was studied. The influence of carbide phase, size of carbides, and retained austenite content on secondary hardening of the steel was analyzed by field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), electron backscattered diffraction (EBSD), and differential scanning calorimetry (DSC); the hardness, microhardness of carbide, and bending strength were tested. The results show that M3C, M6C, M7C3, and MC carbides may precipitate at different tempering temperatures and the transformation of the retained austenite can be controlled by tempering. The phase composition of carbides, microstructure, and retained austenite content strongly influences the performance characteristics of M42 high-speed steel after tempering. In contrast, the secondary carbides produced by tempering thrice at 540 °C are mainly M6C carbides rich in W and Mo elements, and the content of retained austenite is effectively reduced. At this stage, the Rockwell hardness reaches 67.2 HRC, bending strength reaches 3115 MPa, and the properties and microstructure are optimal.

7.
J Genet Eng Biotechnol ; 17(1): 4, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659536

RESUMO

BACKGROUND: Thermostable cellulases are in constant demand for several biotechnological applications. Two thermophilic bacterial strains PW1 and PW2 isolated from Tattapani hot spring were found to have cellulolytic activity. Subsequently, PW1 and PW2 were identified and mined for genes encoding cellulase activity. RESULTS: Sequencing of the 16S rDNA of PW1 and PW2 identified them as Bacillus sp. PW1 (Acc no. KU711837) and Bacillus sp. PW2 (Acc no. KU711838), respectively, which clustered in the clades containing thermophilic members of Bacillus sp. and Geobacillus species. Phylogenetic analysis revealed that despite the morphological and sequence identities, Bacillus sp. PW1 and Bacillus sp. PW2 are different at the genetic level. The cellulase genes (~ 1.1 kb) of the two bacterial strains were amplified using primers designed against related thermophilic cellulases. Sequencing of the cellulase gene amplicons of PW1 and PW2 revealed that they encode proteins of 280 and 206 amino acid residues, respectively. Sequence and domain analysis of the protein products of PW1 and PW2 revealed that they belong to M42 family of aminopeptidase/endoglucanase. The PW2 endoglucanase coding sequence was submitted to Genbank under accession no. MH049504. The structures of putative endoglucanases of PW1 and PW2 were generated using 1VHE.A as template, which showed the presence of vast proportion of random coils. Molecular docking of the modeled endoglucanase proteins with various substrates and products of cellulases showed that carboxymethyl cellulose and maltose exhibit the highest binding affinity, while xylan and glucose the least. CONCLUSIONS: The two thermophilic bacteria PW1 and PW2 and their endoglucanase gene can be further utilized for recombinant production of thermostable cellulases for their application in industries.

8.
J Mol Microbiol Biotechnol ; 27(6): 319-331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29197868

RESUMO

A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.


Assuntos
Brevibacillus/enzimologia , Celulase/isolamento & purificação , Celulase/metabolismo , Gelatinases/isolamento & purificação , Gelatinases/metabolismo , Sequência de Aminoácidos , Aminopeptidases , Sequência de Bases , Brevibacillus/genética , Brevibacillus/isolamento & purificação , Brevibacillus/fisiologia , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulose/metabolismo , DNA Ribossômico/genética , Estabilidade Enzimática , Fermentação , Gelatinases/química , Concentração de Íons de Hidrogênio , Metais , Modelos Moleculares , Peso Molecular , Oryza , Conformação Proteica , Especificidade por Substrato , Temperatura
9.
Biochimie ; 122: 188-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26546839

RESUMO

The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors¼.


Assuntos
Aminopeptidases/química , Células Procarióticas/enzimologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Metais/química , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Virus Res ; 185: 53-63, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24675275

RESUMO

Influenza A virus is one of the major human pathogens. Despite numerous efforts to produce absolutely effective anti-influenza drugs or vaccines, no such agent has been developed yet. One of the main reasons for this complication is the high mutation rate and the specific structure of influenza A viruses genome. For more than 25 years since the first mapping of the viral genome, it was believed that its 8 genome segments encode 10 proteins. However, the proteome of influenza A viruses has turned out to be much more complex than previously thought. In 2001, the first accessory protein, PB1-F2, translated from the alternative open reading frame, was discovered. Subsequently, six more proteins, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3, have been found. It is important to pay close attention to these novel proteins in order to evaluate their role in the pathogenesis of influenza, especially in the case of outbreaks of human infections with new avian viruses, such as H5N1 or H7N9. In this review we summarize the data on the molecular mechanisms used by influenza A viruses to expand their proteome and on the possible functions of the recently discovered viral proteins.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/virologia , Proteoma/genética , Proteínas Virais/genética , Animais , Humanos , Vírus da Influenza A/metabolismo , Proteoma/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA