Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Atheroscler Rep ; 26(9): 463-483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38958925

RESUMO

PURPOSE OF REVIEW: Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS: Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Cardiovasculares , Transtorno Depressivo Maior , Guanilato Quinases , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Polimorfismo de Nucleotídeo Único
2.
Thromb J ; 22(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233821

RESUMO

BACKGROUND: Tissue factor (TF) activity is stringently regulated through processes termed encryption. Post-translational modification of TF and its interactions with various protein and lipid moieties allows for a multi-step de-encryption of TF and procoagulant activation. Membrane-associated guanylate kinase-with inverted configuration (MAGI) proteins are known to regulate the localisation and activity of a number of proteins including cell-surface receptors. METHODS: The interaction of TF with MAGI1 protein was examined as a means of regulating TF activity. MDA-MB-231 cell line was used which express TF and MAGI1, and respond well to protease activated receptor (PAR)2 activation. Proximity ligation assay (PLA), co-immunoprecipitation and pull-down experiments were used to examine the interaction of TF with MAGI1-3 proteins and to investigate the influence of PAR2 activation. Furthermore, by cloning and expressing the PDZ domains from MAGI1, the TF-binding domain was identified. The ability of the recombinant PDZ domains to act as competitors for MAGI1, allowing the induction of TF procoagulant and signalling activity was then examined. RESULTS: PLA and fluorescence microscopic analysis indicated that TF predominantly associates with MAGI1 and less with MAGI2 and MAGI3 proteins. The interaction of TF with MAGI1 was also demonstrated by both co-immunoprecipitation of TF with MAGI1, and co-immunoprecipitation of MAGI1 with TF. Moreover, activation of PAR2 resulted in reduction in the association of these two proteins. Pull-down assays using TF-cytoplasmic domain peptides indicated that the phosphorylation of Ser253 within TF prevents its association with MAGI1. Additionally, the five HA-tagged PDZ domains of MAGI1 were overexpressed separately, and the putative TF-binding domain was identified as PDZ1 domain. Expression of this PDZ domain in cells significantly augmented the TF activity measured both as thrombin-generation and also TF-mediated proliferative signalling. CONCLUSIONS: Our data indicate a stabilising interaction between TF and the PDZ-1 domain of MAGI1 and demonstrate that the activation of PAR2 disrupts this interaction. The release of TF from MAGI1 appears to be an initial step in TF de-encryption, associated with increased TF-mediated procoagulant and signalling activities. This mechanism is also likely to lead to further interactions and modifications leading to further enhancement of procoagulant activity, or the release of TF.

3.
Pharmacology ; 109(2): 98-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325349

RESUMO

INTRODUCTION: Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS: Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS: MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION: MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno/metabolismo , Diabetes Mellitus , Nefropatias Diabéticas/genética , Glucose/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Inflamação/genética , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Biol Cell ; 114(7): 185-198, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35389514

RESUMO

MAGI-1 is a critical cellular scaffolding protein with over 110 different cellular and microbial protein interactors. Since the discovery of MAGI-1 in 1997, MAGI-1 has been implicated in diverse cellular functions such as polarity, cell-cell communication, neurological processes, kidney function, and a host of diseases including cancer and microbial infection. Additionally, MAGI-1 has undergone nomenclature changes in response to the discovery of an additional PDZ domain, leading to lack of continuity in the literature. We address the nomenclature of MAGI-1 as well as summarize many of the critical functions of the known interactions. Given the importance of many of the interactors, such as human papillomavirus E6, the Coxsackievirus and adenovirus receptor (CAR), and PTEN, the enhancement or disruption of MAGI-based interactions has the potential to affect cellular functions that can potentially be harnessed as a therapeutic strategy for a variety of diseases.


Assuntos
Domínios PDZ , Humanos
5.
J Virol ; 95(13): e0004621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33762416

RESUMO

Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.


Assuntos
Proteína ADAM17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Adenoviridae/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/antagonistas & inibidores , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Guanilato Quinases/metabolismo , Células 3T3 , Adenoviridae/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Domínios Proteicos
6.
J Cell Physiol ; 235(1): 245-253, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31222747

RESUMO

Cardiac hypertrophy (CH) is an adaptive cardiac response to overload whose decompensation eventually leads to heart failure or sudden death. Recently, accumulating studies have indicated the implication of long noncoding RNAs (lncRNAs) in CH progression. MAGI1-IT1 is a newly-identified lncRNA that is highly associated with CH, while its specific role in CH progression remains masked. In this study, we uncovered that MAGI1-IT1 was distinctly downregulated in angiotensin (Ang) II-induced hypertrophic H9c2 cells. Also, MAGI1-IT1 overexpression in Ang II-treated H9c2 cells strikingly abolished the enlarged surface area and the enhanced levels of hypertrophic markers such as ANP, BNP, and ß-MHC. Mechanically, we found MAGI1-IT1 sponged miR-302e which was identified as a hypertrophy-facilitator here, and that miR-302e upregulation countervailed the inhibition of MAGI1-IT1 overexpression on hypertrophic cells. Moreover, it was confirmed that MAGI1-IT1 boosted DKK1 expression by absorbing miR-302e. Subsequently, we also illustrated that MAGI1-IT1 inactivated Wnt/beta-catenin signaling through a DKK1-dependent pathway. Finally, both the DKK1 inhibition and LiCI (Wnt activator) supplement abrogated the hypertrophy-suppressive impact of MAGI1-IT1 on Ang II-simulated hypertrophic H9c2 cells. Jointly, our findings disclosed that MAGI1-IT1 functioned as a negative regulator in CH through inactivating Wnt/beta-catenin pathway via targeting miR-302e/DKK1 axis, revealing a novel road for CH treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , RNA Longo não Codificante/genética , Ratos , Regulação para Cima , Proteínas Wnt/genética , beta Catenina/genética
7.
Apoptosis ; 24(11-12): 837-848, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31352641

RESUMO

Renal cell carcinoma (RCC) is the third most common urological cancer with highly metastatic potential. MAGI1 plays an important role in stabilization of the adherens junctions and has been confirmed to suppress invasiveness and metastasis in multiple cancers in clinic. However, its expression and anti-metastatic ability in RCC are still unclear. In this study, we demonstrated that MAGI1 was markedly decreased in the RCC and indicated poor survival. Furthermore, we found that MAGI1 suppressed the invasion and migration of human RCC cells. Mechanistic investigations revealed that MAGI1 stabilized the PTEN/MAGI1/ß-catenin complex to inhibit ß-catenin signaling pathway. Moreover, MAGI1 was targeted by miR-520h which was transcriptionally activated by c-Myb. Collectively, our findings suggested that MAGI1mediated tumor metastasis through c-Myb/miR-520h/MAGI1 signaling pathway in RCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Renais/metabolismo , Moléculas de Adesão Celular/metabolismo , Guanilato Quinases/metabolismo , Neoplasias Renais/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/secundário , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Guanilato Quinases/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo
8.
Chin J Cancer Res ; 29(1): 25-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28373751

RESUMO

OBJECTIVE: To explore the association of membrane-associated guanylate kinase inverted 1 (MAGI1) with gastric cancer (GC) and the related molecular mechanisms. METHODS: The reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were utilized to measure the MAGI1 expression level in GC tissues. Quantitative real-time PCR and Western blotting were used to ensure the MAGI1 expression in GC cell lines. Small hairpin RNA (shRNA) was applied for knockdown of endogenous MAGI1 in GC cells. MTT assay and colony formation assay, scratch wounding migration assay and transwell chamber migration assay, as well as transwell chamber invasion assay were employed respectively to investigate the GC cell proliferation, migration and invasion in MAGI1-knockdown and control GC cells. The potential molecular mechanism mediated by MAGI1 was studied using Western blotting and RT- PCR. RESULTS: RT-PCR and IHC verified MAGI1 was frequently expressed in matched adjacent noncancerous mucosa compared with GC tissues and the expression of MAGI1 was related to clinical pathological parameters. Functional assays indicated that MAGI1 knockdown significantly promoted GC cell migration and invasion. Further mechanism investigation demonstrated that one pathway of MAGI1 inhibiting migration and invasion was mainly by altering the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT)-related molecules via inhibiting MAPK/ERK signaling pathway. CONCLUSIONS: MAGI1 was associated with GC clinical pathological parameters and acted as a tumor suppressor via inhibiting of MAPK/ERK signaling pathway in GC.

9.
Biochim Biophys Acta ; 1833(10): 2302-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23769981

RESUMO

We have recently found that the membrane-associated guanylate kinase with inverted organization-1 (MAGI-1) was enriched in rat nervous tissues such as the glomeruli in olfactory bulb of adult rats and dorsal root entry zone in spinal cord of embryonic rats. In addition, we revealed the localization of MAGI-1 in the growth cone of the primary cultured rat dorsal root ganglion cells. These results point out the possibility that MAGI-1 is involved in the regulation of neurite extension or guidance. In this study, we attempted to reveal the physiological role(s) of MAGI-1 in neurite extension. We found that RNA interference (RNAi)-mediated knockdown of MAGI-1 caused inhibition of nerve growth factor (NGF)-induced neurite outgrowth in PC12 rat pheochromocytoma cells. To clarify the involvement of MAGI-1 in NGF-mediated signal pathway, we tried to identify binding partners for MAGI-1 and identified p75 neurotrophin receptor (p75NTR), a low affinity NGF receptor, and Shc, a phosphotyrosine-binding adaptor. These three proteins formed an immunocomplex in PC12 cells. Knockdown as well as overexpression of MAGI-1 caused suppression of NGF-stimulated activation of the Shc-ERK pathway, which is supposed to play important roles in neurite outgrowth of PC12 cells. These results indicate that MAGI-1 may act as a scaffolding molecule for NGF receptor-mediated signaling pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Neuritos/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Animais , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , Imunofluorescência , Guanilato Quinases/antagonistas & inibidores , Guanilato Quinases/genética , Imunoprecipitação , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso , Neurogênese , Células PC12 , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Fator de Crescimento Neural/genética , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
10.
Cancers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927930

RESUMO

HPV 16 integration is crucial for the onset and progression of premalignant lesions to invasive squamous cell carcinoma (ISCC) because it promotes the amplification of proto-oncogenes and the silencing of tumor suppressor genes; some of these are proteins with PDZ domains involved in homeostasis and cell polarity. Through a bioinformatics approach based on interaction networks, a group of proteins associated with HPV 16 infection, PDZ domains, and direct physical interaction with E6 and related to different hallmarks of cancer were identified. MAGI-1 was selected to evaluate the expression profile and subcellular localization changes in premalignant lesions and ISCC with HPV 16 in an integrated state in cervical cytology; the profile expression of MAGI-1 diminished according to lesion grade. Surprisingly, in cell lines CaSki and SiHa, the protein localization was cytoplasmic and nuclear. In contrast, in histological samples, a change in subcellular localization from the cytoplasm in low-grade squamous intraepithelial lesions (LSIL) to the nucleus in the high-grade squamous intraepithelial lesion (HSIL) was observed; in in situ carcinomas and ISCC, MAGI-1 expression was absent. In conclusion, MAGI-1 expression could be a potential biomarker for distinguishing those cells with normal morphology but with HPV 16 integrated from those showing morphology-related uterine cervical lesions associated with tumor progression.

11.
Neoplasia ; 48: 100960, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184887

RESUMO

BACKGROUND: Cisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms. METHODS: Lactate levels were measured by lactate detection kit. Cisplatin-resistance NSCLC cells were established using progressive concentration of cisplatin. Cell viability, proliferation, and apoptosis were detected by CCK-8, EdU, and flow cytometry, respectively. Cell proliferation in vivo was determined by immunohistochemistry of Ki67 and apoptotic cells were calculated by the TUNEL. MeRIP-PCR was used to measure FOXO3 m6A levels. The interactions of genes were analyzed via RIP, ChIP, Dual-luciferase reporter, and RNA pull-down, respectively. RESULTS: Elevated lactate levels were observed in both NSCLC patients and cisplatin-resistance cells. Lactate treatment increased cisplatin-resistance cell viability in vitro and promoted tumor growth in vivo. Mechanistically, lactate downregulated FOXO3 by YTHDF2-mediated m6A modification. FOXO3 transcriptionally reduced MAGI1-IT1 expression. FOXO3 overexpression inhibited the lactate-induced promotion of cisplatin resistance in NSCLC, which were reversed by MAGI1-IT1 overexpression. MAGI1-IT1 and IL6R competitively bound miR-664b-3p. FOXO3 overexpression or MAGI1-IT1 knockdown repressed lactate-mediated cisplatin resistance in vivo. CONCLUSION: Lactate promoted NSCLC cisplatin resistance through regulating FOXO3/MAGI1-IT1/miR-664b-3p/IL6R axis in YTHDF2-mediated m6A modification.


Assuntos
Adenina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O3 , Neoplasias Pulmonares , MicroRNAs , Humanos , Ácido Láctico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fatores de Transcrição , Proliferação de Células , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Moléculas de Adesão Celular , Proteínas Adaptadoras de Transdução de Sinal , Guanilato Quinases
12.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566008

RESUMO

MAGI1 acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer (BC), and its loss correlates with a more aggressive phenotype. To identify the pathways and events affected by MAGI1 loss, we deleted the MAGI1 gene in the ER+ MCF7 BC cell line and performed RNA sequencing and functional experiments in vitro. Transcriptome analyses revealed gene sets and biological processes related to estrogen signaling, the cell cycle, and DNA damage responses affected by MAGI1 loss. Upon exposure to TNF-α/IFN-γ, MCF7 MAGI1 KO cells entered a deeper level of quiescence/senescence compared with MCF7 control cells and activated the AKT and MAPK signaling pathways. MCF7 MAGI1 KO cells exposed to ionizing radiations or cisplatin had reduced expression of DNA repair proteins and showed increased sensitivity towards PARP1 inhibition using olaparib. Treatment with PI3K and AKT inhibitors (alpelisib and MK-2206) restored the expression of DNA repair proteins and sensitized cells to fulvestrant. An analysis of human BC patients' transcriptomic data revealed that patients with low MAGI1 levels had a higher tumor mutational burden and homologous recombination deficiency. Moreover, MAGI1 expression levels negatively correlated with PI3K/AKT and MAPK signaling, which confirmed our in vitro observations. Pharmacological and genomic evidence indicate HDACs as regulators of MAGI1 expression. Our findings provide a new view on MAGI1 function in cancer and identify potential treatment options to improve the management of ER+ BC patients with low MAGI1 levels.


Assuntos
Neoplasias da Mama , Guanilato Quinases , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Guanilato Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Front Cardiovasc Med ; 9: 791143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082118

RESUMO

We have shown that membrane-associated guanylate kinase with inverted domain structure-1 (MAGI1), a scaffold protein with six PSD95/DiscLarge/ZO-1 (PDZ) domains, is involved in the regulation of endothelial cell (EC) activation and atherogenesis in mice. In addition to causing acute respiratory disease, influenza A virus (IAV) infection plays an important role in atherogenesis and triggers acute coronary syndromes and fatal myocardial infarction. Therefore, the aim of this study is to investigate the function and regulation of MAGI1 in IAV-induced EC activation. Whereas, EC infection by IAV increases MAGI1 expression, MAGI1 depletion suppresses IAV infection, suggesting that the induction of MAGI1 may promote IAV infection. Treatment of ECs with oxidized low-density lipoprotein (OxLDL) increases MAGI1 expression and IAV infection, suggesting that MAGI1 is part of the mechanistic link between serum lipid levels and patient prognosis following IAV infection. Our microarray studies suggest that MAGI1-depleted ECs increase protein expression and signaling networks involve in interferon (IFN) production. Specifically, infection of MAGI1-null ECs with IAV upregulates expression of signal transducer and activator of transcription 1 (STAT1), interferon b1 (IFNb1), myxovirus resistance protein 1 (MX1) and 2'-5'-oligoadenylate synthetase 2 (OAS2), and activate STAT5. By contrast, MAGI1 overexpression inhibits Ifnb1 mRNA and MX1 expression, again supporting the pro-viral response mediated by MAGI1. MAGI1 depletion induces the expression of MX1 and virus suppression. The data suggests that IAV suppression by MAGI1 depletion may, in part, be due to MX1 induction. Lastly, interferon regulatory factor 3 (IRF3) translocates to the nucleus in the absence of IRF3 phosphorylation, and IRF3 SUMOylation is abolished in MAGI1-depleted ECs. The data suggests that MAGI1 inhibits IRF3 activation by maintaining IRF3 SUMOylation. In summary, IAV infection occurs in ECs in a MAGI1 expression-dependent manner by inhibiting anti-viral responses including STATs and IRF3 activation and subsequent MX1 induction, and MAGI1 plays a role in EC activation, and in upregulating a pro-viral response. Therefore, the inhibition of MAGI1 is a potential therapeutic target for IAV-induced cardiovascular disease.

14.
Ocul Immunol Inflamm ; 29(2): 244-249, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32141793

RESUMO

Purpose: Identify genes associated with ocular sarcoidosis (OS).Methods: We genotyped 1.1 million genetic variants to identify significant OS associations, defined as those that achieved p < 5 × 10-8 in a genome-wide comparison of OS cases to healthy controls in our European- or African-American cohorts (EA, AA). Potential functional roles of all associated variants were assessed.Results: Eight significant non-HLA variants were found in AA OS cases compared to healthy controls and confirmed as at least suggestive when comparing OS to non-OS cases. Seven of these were within MAGI1 and include transcription factor binding sites and expression quantitative trait loci. Our EA cohort, while showing similar effect sizes at variants within MAGI1, had no significant variants. Association analysis of HLA-DRB1 alleles confirmed association to OS in EA to *04:01.Conclusion: Our results support organ-specific genetic risk in OS in a compelling candidate, MAGI1, known to be associated with barrier function and autoimmunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Negro ou Afro-Americano/genética , Moléculas de Adesão Celular/genética , Oftalmopatias/genética , Estudo de Associação Genômica Ampla/métodos , Guanilato Quinases/genética , Cadeias HLA-DRB1/genética , Polimorfismo de Nucleotídeo Único , Sarcoidose/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Autoimunidade/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , DNA/genética , Oftalmopatias/etnologia , Oftalmopatias/imunologia , Feminino , Seguimentos , Genótipo , Guanilato Quinases/metabolismo , Cadeias HLA-DRB1/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade/tendências , Sarcoidose/etnologia , Sarcoidose/imunologia , Estados Unidos/epidemiologia
16.
Cancer Manag Res ; 13: 2959-2967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833579

RESUMO

BACKGROUND: MAGI1-IT1 is a long non-coding RNA (lncRNA) previously reported to regulate several cancer types, but its functional role in gastric cancer (GC) remains to be defined. This study therefore explored the mechanistic role played by MAGI1-IT1 in the regulation of GC cell proliferation. METHODS: 120 pairs of GC patient tumor, paracancerous tissues, human GES-1 control cells and human AGS, MKN-74, MKN-45, and MGC-803 GC cell lines were used to detected MAGI1-IT1, miR-302d-3p, and IGF1 expression by a qPCR approach. An shRNA approach was used to knock down MGI1-IT1 in order to examine the effect of such treatment on GC cell proliferation, and rescue experiments were subsequently conducted. In addition, the functional role of MAGI1-IT1 in GC in vivo was evaluated with a xenograft model system. P < 0.05 was the significance threshold. RESULTS: Elevated MAGI1-IT1 expression was detected in GC cell lines and tissues, and was linked to poorer patient overall survival. Knocking down this lncRNA disrupted GC cell proliferation in vitro and in vivo, and miR-302d-3p was identified as a MAGI1-IT1 target. Notably, miR-302d-3p inhibition partially reversed the impact of MAGI1-IT1 knockdown on GC cell proliferation. IGF1 was subsequently identified as a miR-302d-3p target gene that was upregulated by MAGI1-IT1 through miR-302d-3p. CONCLUSION: Overall, these results indicated that MAGI1-IT1 controlled GC cell proliferation by modulating the miR-302d-3p/IGF1 axis, suggesting that this may be a viable treatment target in those with GC.

17.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34503076

RESUMO

Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the ß-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.

18.
Front Cardiovasc Med ; 7: 542485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304925

RESUMO

Previously, we reported that post-translational modifications (PTMs) of MAGI1, including S741 phosphorylation and K931 de-SUMOylation, both of which are regulated by p90RSK activation, lead to endothelial cell (EC) activation. However, roles for p90RSK and MAGI1-PTMs in regulating EC permeability remain unclear despite MAGI1 being a junctional molecule. Here, we show that thrombin (Thb)-induced EC permeability, detected by the electric cell-substrate impedance sensing (ECIS) based system, was decreased by overexpression of dominant negative p90RSK or a MAGI1-S741A phosphorylation mutant, but was accelerated by overexpression of p90RSK, siRNA-mediated knockdown of magi1, or the MAGI1-K931R SUMOylation mutant. MAGI1 depletion also increased the mRNA and protein expression of the large tumor suppressor kinases 1 and 2 (LATS1/2), which inhibited YAP/TAZ activity and increased EC permeability. Because the endothelial barrier is a critical mediator of tumor hypoxia, we also evaluated the role of p90RSK activation in tumor vessel leakiness by using a relatively low dose of the p90RSK specific inhibitor, FMK-MEA. FMK-MEA significantly inhibited tumor vessel leakiness at a dose that does not affect morphology and growth of tumor vessels in vivo. These results provide novel insights into crucial roles for p90RSK-mediated MAGI1 PTMs and the Hippo pathway in EC permeability, as well as p90RSK activation in tumor vessel leakiness.

19.
Cancers (Basel) ; 12(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963297

RESUMO

Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an intracellular adaptor protein that stabilizes epithelial junctions consistent with a tumor suppressive function in several cancers of epithelial origin. Here we report, based on experimental results and human breast cancer (BC) patients' gene expression data, that MAGI1 is highly expressed and acts as tumor suppressor in estrogen receptor (ER)+/HER2- but not in HER2+ or triple negative breast cancer (TNBC). Within the ER+/HER2- subset, high MAGI1 expression associates with ESR1 and luminal genes GATA3 and FOXA1 expression and better prognosis, while low MAGI1 levels correlates with higher histological grade, more aggressive phenotype and worse prognosis. Experimentally, MAGI1 downregulation in the ER+ human BC cells MCF7 impairs ER expression and signaling, promotes cell proliferation, and reduces apoptosis and epithelial differentiation. MAGI1 downregulation in the ER+ murine BC cell line 67NR accelerates primary tumor growth and enhances experimental lung metastasis formation. MAGI1 expression is upregulated by estrogen/ER, downregulated by prostaglandin E2/COX-2axis, and negatively correlates with inflammation in ER+/HER2- BC patients. Taken together, we show that MAGI1 is a new potential tumor suppressor in ER+/HER2- breast cancer with possible prognostic value for the identification of patients at high-risk of relapse within this subset.

20.
Gene ; 701: 82-88, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902784

RESUMO

The goose is one of the most important waterfowl, having lowing laying rate. Previous studies have shown the SNPs in the introns of MAGI-1 (Record-106975) and ACSF2 (Record-106582) significantly associated with egg production in geese. However, the mechanism of those SNPs influencing egg production remains unclear. In this study, the three goose breeds (Yangzhou geese, Zhedong white geese, and Carlos geese) with obviously different egg production were selected, and the allele frequency distribution and functions of those SNPs were investigated. The results suggested that the allele frequency distribution of ACSF2 was significantly different among the three goose breeds (χc2 = 92.377, Pc = 2.29 × 10-22), with the C allele appearing at frequencies of 0.29 in the Yangzhou geese and 0.94 in the Carlos geese. In contrast, the allele frequencies of MAGI-1 were not significantly different among the different goose breeds. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression of MAGI-1 with the AG genotype individuals was significantly higher than those of the AA and GG genotype. For ACSF2, the CC genotype had significantly higher expression than both the AC genotype and the AA genotype. The luciferase reporter analysis revealed that the site-directed mutation ACSF2 (A>C) significantly drove the expression activity. Further analysis suggested that the mutation altered the binding site of the transcription factor BARHL2. Binding of BARHL2 to the ACSF2 intron was confirmed by electrophoretic mobility shift assay (EMSA) analysis. Thus, our findings revealed the A>C mutation of ACSF2 (Record-106582) could promote the expression by regulating the binding of BARHL2, resulting in differences in egg performance, which provided molecular insights into the effect of the polymorphism in ACSF2 on egg performance in geese.


Assuntos
Proteínas Aviárias/genética , Cruzamento , Moléculas de Adesão Celular Neuronais/genética , Coenzima A Ligases/genética , Gansos/genética , Íntrons , Polimorfismo Genético , Animais , Proteínas Aviárias/biossíntese , Moléculas de Adesão Celular Neuronais/biossíntese , Coenzima A Ligases/biossíntese , Gansos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA