Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Endocrinol (Oxf) ; 101(2): 108-113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796770

RESUMO

BACKGROUND: Newborn screening (NBS) reduces the risk of mortality in congenital adrenal hyperplasia (CAH), mainly due to the salt-wasting form of 21-hydroxylase deficiency. There is limited knowledge regarding the results of NBS in non-CAH primary adrenal insufficiency (non-CAH PAI). PATIENTS AND METHODS: Clinical and NBS for CAH data of neonates who were diagnosed with non-CAH PAI between January and December 2022 were examined. RESULTS: Patients (n = 6, 4 females) were presented with severe hyperpigmentation (n = 6), hypoglycemia (n = 4), hyponatremia (n = 3), hyperkalemia (n = 1), respiratory distress syndrome (n = 1) between 3rd hour to 2 months of life. All had normal NBS results. The median first-tier 17-hydroxyprogesterone (17OHP) concentration in NBS for CAH was 0.14 ng/mL (range; 0.05-0.85). Molecular studies revealed biallelic mutations in the MC2R (n = 4; 3 homozygous, 1 compound heterozygous), MRAP (n = 1) and STAR (n = 1) genes. Glucocorticoid with or without mineralocorticoid replacement was initiated once the diagnosis of non-CAH PAI was established. CONCLUSION: Neonates with non-CAH PAI have always normal NBS due to persistently low 17OHP, even when these newborn infants are severely symptomatic for adrenal insufficiency. Clinicians should be alert for signs of adrenal insufficiency in neonates, even if the patient has a 'normal' screening for CAH, so as not to delay diagnosis and treatment. This fact should be kept in mind particularly in countries where these conditions are more common than elsewhere.


Assuntos
Hiperplasia Suprarrenal Congênita , Insuficiência Adrenal , Triagem Neonatal , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Feminino , Masculino , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/sangue , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/sangue , 17-alfa-Hidroxiprogesterona/sangue , Mutação
2.
Gen Comp Endocrinol ; 343: 114356, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562700

RESUMO

Recent studies from our group on melanocortin 2 receptors (Mc2r) from basal families of actinopterygians have served to resolve that Mrap1 dependence and ACTH selectivity are features of even the most basal ray-finned fishes. However, there have been no studies on Mc2r function of the basal sarcopterygians, the lobe-finned fishes, represented by the extant members coelacanths and lungfishes. Here, we offer the first molecular and functional characterization of an Mc2r from a lobe-finned fish, the West African lungfish (Protopterus annectens). Plasmids containing cDNA constructs of lungfish (lf) Mc2r and Mrap1 were expressed in mammalian and zebrafish cell lines. Cells were then stimulated by human ACTH(1-24) and melanocyte stimulating hormone (α-MSH), as well as alanine-substituted analogs of hACTH(1-24) targeting residues within the H6F7R8W9 and K15K16R17R18P19 motifs. Activation of lfMc2r was assessed using a cAMP-responsive luciferase reporter gene assay. In these assays, lfMc2r required co-expression with lfMrap1, was selective for ACTH over α-MSH at physiological concentrations of the ligands, and was completely inhibited by multiple-alanine substitutions of the HFRW (A6-9) and KKRRP (A15-19) motifs. Single- and partial-alanine substitutions of the HFRW and KKRRP motifs varied in their impacts on receptor-ligand affinity from having no effect to completely inhibiting lfMc2r activation. This characterization of the Mc2r of a lobe-finned fish fulfills the last major extant vertebrate group for which Mc2r function had yet to be characterized. In doing so, we resolve that all basal bony vertebrate groups exhibit Mc2r function that substantially differs from that of the cartilaginous fishes, indicating that rapid and dramatic shift in Mc2r function occurred between the radiation of cartilaginous fishes and the emergence of bony fishes. We support this interpretation with a molecular clock analysis of the melanocortin receptors, which demonstrates the uniquely high rate of sequence divergence in Mc2r. Much remains to be understood regarding the molecular evolution of Mc2r during the early radiation of vertebrates that resulted in the derived functional characteristics of Mrap1 dependence and exclusive selectivity for ACTH.


Assuntos
Receptor Tipo 2 de Melanocortina , alfa-MSH , Animais , Humanos , Hormônio Adrenocorticotrópico/farmacologia , Alanina/genética , Evolução Molecular , Mamíferos/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Gen Comp Endocrinol ; 342: 114342, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454980

RESUMO

The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.


Assuntos
Tubarões , Squalus acanthias , Animais , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Squalus acanthias/metabolismo , Tubarões/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Sequência de Aminoácidos , Peixes/metabolismo
4.
Gen Comp Endocrinol ; 328: 114105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973587

RESUMO

In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells. In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic to the membrane surface and bind ACTH. Here, we evaluated the structure and pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus), which represents the most basal bony fish from which an Mc2r has been pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or melanocyte-stimulating hormone (α-MSH) ligands, and assessed using a luciferase reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin (Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not α-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1 dependence and ACTH selectivity, indicating that these qualities of Mc2r function are ancestral to all bony fish Mc2rs.


Assuntos
Receptor Tipo 2 de Melanocortina , Receptores de Melanocortina , Hormônio Adrenocorticotrópico/farmacologia , Animais , Células CHO , Galinhas/metabolismo , Cricetinae , Cricetulus , DNA Complementar/metabolismo , Peixes/genética , Hormônios Estimuladores de Melanócitos/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Senegal , alfa-MSH/metabolismo
5.
Gen Comp Endocrinol ; 323-324: 114043, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447133

RESUMO

RT-PCR analysis indicated that steroidogenic tissues are located along the length of the kidney of the neopterygian fish, Lepisosteus oculatus (spotted gar; g). However, RT-PCR analysis of the distribution of mc2r mRNA and mrap1 mRNA, critical components of the gar hypothalamus/pituitary/interrenal (HPI) axis, was only associated with the anterior and medial regions of the kidney. Steroidogenic cells were designated as interrenal cells that possess star mRNA (in situ hybridization) and lipid vesicles (histological analysis) within the kidney. RT-PCR also detected mc5r mRNA along the length of the tissues associated with the kidney. In situ hybridization analysis of the putative interrenal cells revealed co-expression of mc2r, and mc5r mRNAs in the same steroidogenic cells. Co-expression of gar Mc2r (gMc2r) and Mrap1 (gMrap1) in Chinese Hamster Ovary (CHO) cells stimulated with ACTH(1-24) resulted in activation with an EC50 value of 1.0 × 10-11M +/- 4.6 × 10-11); whereas stimulation of CHO cells co-expressed with gar Mc5r (gMc5r) and gMrap1 and stimulated with ACTH(1-24) resulted in an EC50 value that was 3 orders of magnitude lower (2.1 × 10-8 M +/- 3.5 × 10-9). Interesting, when CHO cells were co-transfected with gMc2r, gMc5r, and gMrap1 there was a decline in activation as measured by the Vmax values for CHO cells stimulated with either ACTH(1-24) or α-MSH. These results suggest that some interaction may occur between gMc2r and gMc5r when both receptors are expressed in the same cells. Phylogenetic and selection pressure analyses of vertebrate mc2r and mc5r genes concluded that the two genes are evolving at different rates after duplication from a proposed common ancestral gene.


Assuntos
Hormônio Adrenocorticotrópico , Peixes , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Peixes/genética , Hipotálamo/metabolismo , Filogenia , RNA Mensageiro
6.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955479

RESUMO

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R128-R133, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718699

RESUMO

The adrenal stress response in the neonatal rat shifts from ACTH-independent to ACTH-dependent between postnatal days 2 (PD2) and 8 (PD8). This may be due to an increase in an endogenous, bioactive, nonimmunoreactive ligand to the melanocortin type 2 receptor (MC2R). GPS1574 is a newly described MC2R antagonist that we have shown to be effective in vitro. Further experimentation with GPS1574 would allow better insight into this seemingly ACTH-independent steroidogenic response in neonates. We evaluated the acute corticosterone response to hypoxia or ACTH injection following pretreatment with GPS1574 (32 mg/kg) or vehicle for GPS1574 in PD2, PD8, and PD15 rat pups. Pretreatment with GPS1574 decreased baseline corticosterone in PD2 pups but increased baseline corticosterone in PD8 and PD15 pups. GPS1574 did not attenuate the corticosterone response to hypoxia in PD2 pups and augmented the corticosterone response in PD8 and PD15 pups. GPS1574 augmented the corticosterone response to ACTH in PD2 and PD15 pups but had no significant impact on the response in PD8 pups. Baseline adrenal Mrap and Star mRNA increased from PD2 to PD15, whereas Mrap2 mRNA expression was low and did not change with age. The data suggest that GPS1574 is not a pure MC2R antagonist, but rather acts as a biasing agonist/antagonist. Its ability to attenuate or augment the adrenal response may depend on the ambient plasma ACTH concentration and/or developmental changes in early transduction steroidogenic pathway genes.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Hormônio Adrenocorticotrópico/farmacologia , Corticosterona/sangue , Antagonistas de Hormônios/farmacologia , Hipóxia/sangue , Receptor Tipo 2 de Melanocortina/antagonistas & inibidores , Estresse Fisiológico , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipóxia/genética , Hipóxia/fisiopatologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 2 de Melanocortina/metabolismo , Fatores de Tempo
8.
Int J Mol Sci ; 18(2)2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28146118

RESUMO

Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between -1320 and -720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that -830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. Mutations of cAMP response elements on Mc2r promoter disrupts JDP2 effect. Furthermore, we demonstrate that removal of phosphorylation of JDP2 results in attenuated transcriptional activity of Mc2r. Finally, we show that JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity. Taken together, JDP2 acts as a novel transcriptional activator of the mouse Mc2r gene, suggesting that JDP2 may have physiological functions as a novel player in MC2R-mediated steroidogenesis as well as cell signaling in adrenal glands.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Glândulas Suprarrenais , Animais , Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Sumoilação
9.
Gen Comp Endocrinol ; 234: 117-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26752246

RESUMO

The activation of mammalian melanocortin-2 receptor (MC2R) orthologs is dependent on a four-amino acid activation motif (LDYL/I) located in the N-terminal of mammalian MRAP1 (melanocortin-2 receptor accessory protein). Previous alanine substitution analysis had shown that the Y residue in this motif appears to be the most important for mediating the activation of mammalian MC2R orthologs. Similar, but not identical amino acid motifs were detected in rainbow trout MRAP1 (YDYL) and zebrafish MRAP1 (YDYV). To determine the importance of these residues in the putative activation motifs, rainbow trout and zebrafish MRAP1 orthologs were individually co-expressed in CHO cells with rainbow trout MC2R, and the activation of this receptor with either the wild-type MRAP1 ortholog or alanine-substituted analogs of the two teleost MRAP1s was analyzed. Alanine substitutions at all four amino acid positions in rainbow trout MRAP1 blocked activation of the rainbow trout MC2R. Single alanine substitutions of the D and Y residues in rainbow trout and zebrafish MRAP1 indicate that these two residues play a significant role in the activation of rainbow trout MC2R. These observations indicate that there are subtle differences in the way that teleost and mammalian MRAPs are involved in the activation of their corresponding MC2R orthologs.


Assuntos
Proteínas de Membrana/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Oncorhynchus mykiss , Peixe-Zebra
10.
Gen Comp Endocrinol ; 204: 195-202, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879931

RESUMO

Male smallmouth bass (Micropterus dolomieu) provide sole parental care until offspring reach independence, a period of several weeks. During the early parental care period when males are guarding fresh eggs (MG-FE), cortisol responsiveness is attenuated; the response is re-established when males reach the end of the parental care period and are guarding free-swimming fry (MG-FSF). It was hypothesized that attenuation of the cortisol response in male smallmouth bass during early parental care reflected modulation of hypothalamic-pituitary-interrenal (HPI) axis function. Male smallmouth bass were sampled at the beginning (MG-FE) and end of the parental care period (MG-FSF), before and/or 25 min after exposure to a standardized stressor consisting of 3 min of air exposure. Repeated sampling of stressed fish for analysis of plasma cortisol and adrenocorticotropic hormone (ACTH) levels was carried out. Males significantly elevated both plasma cortisol and ACTH levels when guarding free-swimming fry but not during early parental care. Control and stressed fish were terminally sampled for tissue mRNA abundance of preoptic area (POA) and hypothalamic corticotropin-releasing factor (CRF) as well as head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). No significant differences in either hypothalamus CRF or head kidney P450scc mRNA abundance were found across parental care stages or in response to stress. However, POA CRF mRNA abundance and interrenal cell MC2R and StAR mRNA abundances failed to increase in response to stress in MG-FE. Thus, the attenuated cortisol response in males guarding fresh eggs may be explained by hypoactive HPI axis function in response to stress. The present is one of few studies, and the first teleost study, to address the mechanisms underlying resistance to stress during the reproductive/parental care period.


Assuntos
Bass/metabolismo , Hormônio Liberador da Corticotropina/sangue , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Animais , Bass/crescimento & desenvolvimento , Rim Cefálico/metabolismo , Masculino , Área Pré-Óptica/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Reprodução/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Gen Comp Endocrinol ; 203: 3-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24713445

RESUMO

Following the biochemical characterization of the pituitary hormone, adrenocorticotropin (ACTH), in the 1950's, a number of structure/function studies were done which identifies two amino acid motifs in ACTH, the HFRW motif and KKRR motif, as critical for the activation of the "ACTH" receptor on adrenal cortex cells. In the 1990's the "ACTH" receptor was identified as a member of the melanocortin receptor gene family, and given the name melanocortin-2 receptor (MC2R). Since that time a number of studies on both tetrapod and teleost MC2R orthologs have established that these orthologs can only be activated by ACTH, but not by any of the MSH-sized melanocortin ligands, and these orthologs require interaction with the melanocortin-2 receptor accessory protein (MRAP) for functional expression. This review summarizes recent structure/function studies on human ACTH, and points out the importance of the GKPVG motif in ACTH for the activation of the receptor. In this regard, a multiple-step model for the activation of tetrapod and teleost MC2R orthologs is presented, and the evolution of gnathostome MC2R ligand selectivity and the requirement for MRAP interaction is discussed in light of a recent study on a cartilaginous fish MC2R ortholog. This review contains excerpts from the Gorbman/Bern Lecture presented at the Second Meeting of the North American Society for Comparative Endocrinology (NASCE).


Assuntos
Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Evolução Molecular , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptor Tipo 2 de Melanocortina/química
12.
Gen Comp Endocrinol ; 196: 8-16, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269985

RESUMO

In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated cortisol response to an acute stressor.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Rim Cefálico/metabolismo , Hidrocortisona/sangue , Oncorhynchus mykiss/fisiologia , Meio Social , Estresse Psicológico/sangue , Animais , Proteínas de Peixes/genética , Rim Cefálico/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Suínos
13.
Mol Syndromol ; 15(1): 77-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357256

RESUMO

Introduction: Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease resulting from isolated glucocorticoid deficiency or unresponsiveness to adrenocorticotropic hormone. Patients with FGD usually present in infancy or early childhood with hyperpigmentation, recurrent infections, and hypoglycemia. The salt-wasting crisis is rare. Case Presentation: A term female neonate was admitted to the neonatal intensive care unit due to respiratory distress. On physical examination, she had generalized hyperpigmentation. Initial laboratory work-up yielded normal serum electrolytes and glucose. Hyponatremia and hyperkalemia emerged on follow-up. The patient was diagnosed as having primary adrenal insufficiency (PAI) with elevated plasma adrenocorticotropin hormone and reduced cortisol levels and hydrocortisone. We started on oral sodium (5 mEq/kg/day) and fludrocortisone (FC) (0.2 mg/day) treatment to the patient. Ultrasonography revealed hypoplastic adrenal glands. Molecular genetic analysis revealed a previously reported homozygous pathogenic variant NM_000529.2: c.560delT (p.V187fs*29) in the MC2R gene. FC dose was tapered to 0.05 mg/day on the third month of life and was stopped at tenth months of age with maintenance of normal serum electrolytes and clinical findings. Conclusion: FGD due to MC2R gene mutation may rarely present with a salt-wasting crisis in the neonatal period. Identifying the causative gene with the pathogenic variant in PAI may serve to individualize a treatment plan.

14.
Eur J Endocrinol ; 191(3): 334-344, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39171930

RESUMO

BACKGROUND: Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a rare cause of Cushing's syndrome. Individuals with PBMAH and glucose-dependent insulinotropic polypeptide (GIP)-dependent Cushing's syndrome due to ectopic expression of the GIP receptor (GIPR) typically harbor inactivating KDM1A sequence variants. Primary unilateral macronodular adrenal hyperplasia (PUMAH) with concomitant glucocorticoid and androgen excess has never been encountered or studied. METHODS: We investigated a woman with a large, heterogeneous adrenal mass and severe adrenocorticotropic hormone-independent glucocorticoid and androgen excess, a biochemical presentation typically suggestive of adrenocortical carcinoma. The patient presented during pregnancy (22nd week of gestation) and reported an 18-month history of oligomenorrhea, hirsutism, and weight gain. We undertook an exploratory study with detailed histopathological and genetic analysis of the resected adrenal mass and leukocyte DNA collected from the patient and her parents. RESULTS: Histopathology revealed benign macronodular adrenal hyperplasia. Imaging showed a persistently normal contralateral adrenal gland. Whole-exome sequencing of 4 representative nodules detected KDM1A germline variants, benign NM_001009999.3:c.136G > A:p.G46S, and likely pathogenic NM_001009999.3:exon6:c.865_866del:p.R289Dfs*7. Copy number variation analysis demonstrated an additional somatic loss of the KDM1A wild-type allele on chromosome 1p36.12 in all nodules. RNA sequencing of a representative nodule showed low/absent KDM1A expression and increased GIPR expression compared with 52 unilateral sporadic adenomas and 4 normal adrenal glands. Luteinizing hormone/chorionic gonadotropin receptor expression was normal. Sanger sequencing confirmed heterozygous KDM1A variants in both parents (father: p.R289Dfs*7 and mother: p.G46S) who showed no clinical features suggestive of glucocorticoid or androgen excess. CONCLUSIONS: We investigated the first PUMAH associated with severe Cushing's syndrome and concomitant androgen excess, suggesting pathogenic mechanisms involving KDM1A.


Assuntos
Síndrome de Cushing , Histona Desmetilases , Humanos , Feminino , Adulto , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Síndrome de Cushing/genética , Síndrome de Cushing/patologia , Síndrome de Cushing/metabolismo , Glucocorticoides , Gravidez , Androgênios/metabolismo , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/diagnóstico por imagem , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/complicações , Hiperplasia Suprarrenal Congênita/patologia , Hiperplasia Suprarrenal Congênita/metabolismo
15.
Biochem Biophys Res Commun ; 439(3): 401-6, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23994134

RESUMO

Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and ß-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the -1209/-1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.


Assuntos
Adipócitos/citologia , Proteínas de Membrana/genética , PPAR gama/metabolismo , Ativação Transcricional , Células 3T3-L1 , Adipócitos/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Técnicas de Silenciamento de Genes , Lipólise , Camundongos , Regiões Promotoras Genéticas
16.
Mol Syndromol ; 14(1): 71-79, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777708

RESUMO

Background: Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease characterized by glucocorticoid deficiency without mineralocorticoid deficiency. We report 3 Chinese patients with MRAP or MC2R mutations. Case Reports: Patient 1 presented with hyperpigmentation. Endocrine investigations revealed low serum cortisol levels and elevated adrenocorticotropic hormone (ACTH) levels. Furthermore, low serum sodium was evident. She was diagnosed with FGD type 2 due to a homozygous mutation in MRAP (c.106+1delG), revealed through exome sequencing (ES). After 2-year treatment with hydrocortisone, skin hyperpigmentation was improved. Patient 2 initially presented with hyponatremia. Low cortisol levels and high levels of ACTH were subsequently detected; he was subjected to a hydrocortisone treatment during which he experienced repeated hypoglycemic attacks and pigmentation. ES revealed the same mutation as in patient 1 in MRAP (c.106+1delG), thus he was diagnosed with FGD type 2. After 6 years of age, his symptoms remarkably improved, and there was no episode of hypoglycemia. Patient 3 mainly presented with hyperpigmentation, hypoglycemic attack, and tall stature. Laboratory findings were normal except for low serum cortisol levels and high ACTH levels. She was diagnosed with FGD type 1 as ES revealed a novel homozygous mutation in MC2R (c.712C>A, p.His238Tyr). After nearly 2 years of hydrocortisone replacement therapy, the excessive growth was reduced to near normal, and the skin color returned to normal. Conclusions: Three patients were diagnosed with FGD (one with FGD type 1 and two with FGD type 2). They all presented with hyperpigmentation and hypoglycemia; however, compared with patient 1, the clinical manifestations of patient 2 were more complicated. Patient 3 had later onset and taller stature than patients 1 and 2. A novel mutation in patient 3 expands the mutation spectrum of MC2R.

17.
Front Endocrinol (Lausanne) ; 14: 1113234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909322

RESUMO

Background: Melanocortin-2 receptor (MC2R), a member of the G protein-coupled receptor family, is selectively activated by adrenocorticotropic hormone (ACTH). variants in MC2R are associated with family glucocorticoid deficiency 1 (FGD1). Case presentation: We first reported a Chinese family with two affected siblings with a homozygotic variant of c.712C>T/p.H238Y in MC2R, presenting with skin hyperpigmentation, hyperbilirubinemia, and tall stature. These individuals showed novel clinical features, including congenital heart defects, not been found in other FGD1 patients. Conclusions: We reported a Chinese family with affected siblings having a homozygotic variant of c.712C>T/p.H238Y in MC2R.Our report may expand the genetic and clinical spectrum of FGD1.


Assuntos
Glucocorticoides , Receptor Tipo 2 de Melanocortina , Humanos , População do Leste Asiático , Mutação , Receptor Tipo 2 de Melanocortina/genética
18.
Front Oncol ; 13: 1274131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348123

RESUMO

Background: The incidence rate of childhood acute lymphoblastic leukemia (ALL) differs worldwide, and the interplay between hemostasis actors and the maladaptive responses to environmental exposures has been explored. It has been proposed that endogenous cortisol, induced by different triggers, would eliminate pre-leukemic clones originated in utero. Herein, we tested if the interaction between CRHR1rs242941 C>A, MC2Rrs1893219 A>G, NR3C1rs41423247 G>C, and GLCCI1rs37972 C>T (players in glucocorticoid secretion) and birth characteristics would be associated with ALL risk. Methods: Children aged <10 years were enrolled within the EMiLI project (period: 2012 to 2020). The study had three steps: (1) observational analysis of birth characteristics (n = 533 cases and 1,603 controls); (2) genotyping to identify single-nucleotide variants (n = 756 cases and 431 controls); and (3) case-only to test gene-environment interactions (n = 402 cases). Genetic syndromes were exclusion criteria. The controls were healthy children. The distribution of the variables was assessed through Pearson's chi-square test. Logistic regression (LR) tests were run fitted and adjusted for selected covariate models to estimate the association risk. Formal interaction analysis was also performed. Genotyping was tested by qPCR with TaqMan probes (NR3C1) or by high-resolution melting (MC2R and GLCCI1). Hardy-Weinberg equilibrium (HWE) was accessed by the chi-square test. The genotype-risk association was tested in co-dominant, dominant, and recessive models. The gene-environment interaction odds ratio (iOR) was assessed in case-only. Results: Low birthweight, C-section, and low maternal schooling were associated with increased risk for ALL, adjOR 2.11, 95% CI, 1.02-4.33; adjOR 1.59, 95% CI, 1.16-2.17; and adjOR 3.78, 95% CI, 2.47-5.83, respectively, in a multiple logistic regression model. MC2R rs1893219 A>G was negatively associated with ALL (AG: OR = 0.68; 95% CI = 0.50-0.94 and GG: OR = 0.60; 95% CI = 0.42-0.85), while for GLCCI1 rs37972 C>T, TT was positively associated with ALL (OR = 1.91; 95% CI = 1.21-3.00). The combination of genotypes for MC2R (AA) and GLCCI1 (TT) increased ALL risk (OR = 2.61; 95% CI = 1.16-5.87). In a multiplicative interaction, MC2R rs1893219 A>G was associated with children whose mothers had less than 9 years of schooling (iOR = 1.99; 95% CI = 1.11-1.55). Conclusion: Our study has demonstrated a significant association between MC2R rs1893219 A>G (reduced risk) and GLCCI1 rs37972 C>T variants (increased risk) and childhood ALL susceptibility. Based on this evidence, genes controlling the HPA axis activity may play a role in leukemogenesis, and further investigation is needed to substantiate our findings.

19.
Biomolecules ; 12(11)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421695

RESUMO

In derived bony vertebrates, activation of the melanocortin-2 receptor (Mc2r) by its ACTH ligand requires chaperoning by the Mc2r accessory protein (Mrap1). The N-terminal domain of the non-mammalian tetrapod MRAP1 from chicken (c; Gallus gallus) has the putative activation motif, W18D19Y20I21, and the N-terminal domain in the neopterygian ray-finned fish Mrap1 from bowfin (bf; Amia calva) has the putative activation motif, Y18D19Y20I21. The current study used an alanine-substitution paradigm to test the hypothesis that only the Y20 position in the Mrap1 ortholog of these non-mammalian vertebrates is required for activation of the respective Mc2r ortholog. Instead, we found that for cMRAP1, single alanine-substitution resulted in a gradient of inhibition of activation (Y20 >> D19 = W18 > I21). For bfMrap1, single alanine-substitution also resulted in a gradient of inhibition of activation (Y20 >> D19 > I21 > Y18). This study also included an analysis of Mc2r activation in an older lineage of ray-finned fish, the paddlefish (p), Polyodon spathula (subclass Chondronstei). Currently no mrap1 gene has been found in the paddlefish genome. When pmc2r was expressed alone in our CHO cell/cAMP reporter gene assay, no activation was observed following stimulation with ACTH. However, when pmc2r was co-expressed with either cmrap1 or bfmrap1 robust dose response curves were generated. These results indicate that the formation of an Mc2r/Mrap1 heterodimer emerged early in the radiation of the bony vertebrates.


Assuntos
Hormônio Adrenocorticotrópico , Receptor Tipo 2 de Melanocortina , Cricetinae , Animais , Filogenia , Hormônio Adrenocorticotrópico/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Peixes/genética , Peixes/metabolismo , Cricetulus , Alanina
20.
Endocr Connect ; 11(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515667

RESUMO

The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing's disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the ß2 adrenergic receptor and dose-response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA