Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379838

RESUMO

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , Grânulos de Estresse , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos/metabolismo
2.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352207

RESUMO

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Assuntos
Carcinogênese/genética , Metiltransferases/genética , Neoplasias/genética , tRNA Metiltransferases/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Metilação , Neoplasias/patologia , Oncogenes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA de Transferência/genética
3.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031083

RESUMO

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Assuntos
Guanosina/análogos & derivados , Metiltransferases/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Células A549 , Sequência de Bases , Bioensaio , Células CACO-2 , Movimento Celular , Proliferação de Células , Guanosina/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Conformação de Ácido Nucleico
4.
Mol Cell ; 74(6): 1304-1316.e8, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031084

RESUMO

N7-methylguanosine (m7G) is a positively charged, essential modification at the 5' cap of eukaryotic mRNA, regulating mRNA export, translation, and splicing. m7G also occurs internally within tRNA and rRNA, but its existence and distribution within eukaryotic mRNA remain to be investigated. Here, we show the presence of internal m7G sites within mammalian mRNA. We then performed transcriptome-wide profiling of internal m7G methylome using m7G-MeRIP sequencing (MeRIP-seq). To map this modification at base resolution, we developed a chemical-assisted sequencing approach that selectively converts internal m7G sites into abasic sites, inducing misincorporation at these sites during reverse transcription. This base-resolution m7G-seq enabled transcriptome-wide mapping of m7G in human tRNA and mRNA, revealing distribution features of the internal m7G methylome in human cells. We also identified METTL1 as a methyltransferase that installs a subset of m7G within mRNA and showed that internal m7G methylation could affect mRNA translation.


Assuntos
Mapeamento Cromossômico/métodos , Guanosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Transcriptoma , Animais , Sequência de Bases , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Transcrição Reversa
5.
Mol Cell ; 71(2): 244-255.e5, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983320

RESUMO

tRNAs are subject to numerous modifications, including methylation. Mutations in the human N7-methylguanosine (m7G) methyltransferase complex METTL1/WDR4 cause primordial dwarfism and brain malformation, yet the molecular and cellular function in mammals is not well understood. We developed m7G methylated tRNA immunoprecipitation sequencing (MeRIP-seq) and tRNA reduction and cleavage sequencing (TRAC-seq) to reveal the m7G tRNA methylome in mouse embryonic stem cells (mESCs). A subset of 22 tRNAs is modified at a "RAGGU" motif within the variable loop. We observe increased ribosome occupancy at the corresponding codons in Mettl1 knockout mESCs, implying widespread effects on tRNA function, ribosome pausing, and mRNA translation. Translation of cell cycle genes and those associated with brain abnormalities is particularly affected. Mettl1 or Wdr4 knockout mESCs display defective self-renewal and neural differentiation. Our study uncovers the complexity of the mammalian m7G tRNA methylome and highlights its essential role in ESCs with links to human disease.


Assuntos
Proteínas de Ligação ao GTP/genética , Guanosina/análogos & derivados , Metiltransferases/genética , RNA de Transferência/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Autorrenovação Celular/genética , Células-Tronco Embrionárias , Proteínas de Ligação ao GTP/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo
6.
Biochem Biophys Res Commun ; 693: 149385, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38118310

RESUMO

BACKGROUND: In recent years, many studies have confirmed that hypoxia and hypoxia inducible factor (HIF)-1α drive the development of colorectal cancer (CRC). HIF-1α also modulates epitranscriptomic remodeling to regulate cancer development. However, the mechanism by which RNA methylation is altered under hypoxic conditions and the underlying regulatory mechanisms in CRC remain unclear. METHODS: Here, seven common types of modifications of mRNA and tRNA were quantitated using liquid chromatography-tandem mass spectrometry. To validate the robustness of the profiling data, modifications that were consistently altered across the three CRC cell lines under hypoxia were validated via dot blot analysis. Then, 10 enzymes that could regulate the abundance of three RNA modifications in tRNA were measured in CRC cells after hypoxia treatment using quantitative real-time polymerase chain reaction. Furthermore, the regulatory role of HIF-1α in the expression of methyltransferase 1 (METTL1) under hypoxic conditions was confirmed using METTL1 promoter activity assays and HIF-1α small interfering RNA (siRNA). The binding capacity of HIF-1α to each hypoxia response element (HRE) in the promoter of METTL1 was investigated by performing Chromatin immunoprecipitation assay (ChIP). RESULTS: Abundance of RNA modifications was altered more consistently and significantly in tRNA than in mRNA under hypoxic conditions. In addition, the abundance of N7-methyleguanosine (m7G) modification in tRNA decreased significantly under hypoxic conditions. As a methyltransferase of the m7G modification in tRNA, the expression of METTL1 mRNA was drastically downregulated under hypoxic conditions. Mechanistically, suppression of HIF-1α by siRNA upregulated the METTL1 promoter activity. Furthermore, ChIP showed that HIF-1α could bind with an HRE in the promoter region of METTL1, indicating that METTL1 is a direct target of HIF-1α in CRC cells under hypoxic conditions. CONCLUSIONS: Our study revealed that the abundance of the m7G modification in tRNA was drastically reduced in CRC cells dependent on the HIF-1α-mediated inhibition of METTL1 transcription under hypoxic conditions.


Assuntos
Fator 1 Induzível por Hipóxia , Metiltransferases , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Metiltransferases/metabolismo , Hipóxia/genética , RNA Interferente Pequeno/metabolismo , RNA Mensageiro/genética , RNA de Transferência/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral
7.
Cancer Immunol Immunother ; 73(6): 112, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693422

RESUMO

OBJECTIVE: The high mortality rate of gastric cancer, traditionally managed through surgery, underscores the urgent need for advanced therapeutic strategies. Despite advancements in treatment modalities, outcomes remain suboptimal, necessitating the identification of novel biomarkers to predict sensitivity to immunotherapy. This study focuses on utilizing single-cell sequencing for gene identification and developing a random forest model to predict immunotherapy sensitivity in gastric cancer patients. METHODS: Differentially expressed genes were identified using single-cell RNA sequencing (scRNA-seq) and gene set enrichment analysis (GESA). A random forest model was constructed based on these genes, and its effectiveness was validated through prognostic analysis. Further, analyses of immune cell infiltration, immune checkpoints, and the random forest model provided deeper insights. RESULTS: High METTL1 expression was found to correlate with improved survival rates in gastric cancer patients (P = 0.042), and the random forest model, based on METTL1 and associated prognostic genes, achieved a significant predictive performance (AUC = 0.863). It showed associations with various immune cell types and negative correlations with CTLA4 and PDCD1 immune checkpoints. Experiments in vitro and in vivo demonstrated that METTL1 enhances gastric cancer cell activity by suppressing T cell proliferation and upregulating CTLA4 and PDCD1. CONCLUSION: The random forest model, based on scRNA-seq, shows high predictive value for survival and immunotherapy sensitivity in gastric cancer patients. This study underscores the potential of METTL1 as a biomarker in enhancing the efficacy of gastric cancer immunotherapy.


Assuntos
Imunoterapia , Análise de Célula Única , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Humanos , Análise de Célula Única/métodos , Imunoterapia/métodos , Animais , Camundongos , Prognóstico , Biomarcadores Tumorais/genética , Análise de Sequência de RNA/métodos , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Algoritmo Florestas Aleatórias
8.
Biol Chem ; 405(3): 217-228, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37694982

RESUMO

N6-methyladenosine (m6A) and N7-methylguanosine (m7G) modification of RNA represent two major intracellular post-transcriptional regulation modes of gene expression. However, the crosstalk of these two epigenetic modifications in tumorigenesis remain poorly understood. Here, we show that m6A methyltransferase METTL3-mediated METTL1 promotes cell proliferation of head and neck squamous cell carcinoma (HNSC) through m7G modification of the cell-cycle regulator CDK4. By mining the database GEPIA, METTL1 was shown to be up-regulated in a broad spectrum of human cancers and correlated with patient clinical outcomes, particularly in HNSC. Mechanistically, METTL3 methylates METTL1 mRNA and mediates its elevation in HNSC via m6A. Functionally, over-expression of METTL1 enhances HNSC cell growth and facilitates cell-cycle progress, while METTL1 knockdown represses these biological behaviors. Moreover, METTL1 physically binds to CDK4 transcript and regulates its m7G modification level to stabilize CDK4. Importantly, the inhibitory effects of METTL1 knockdown on the proliferation of HNSC, esophageal cancer (ESCA), stomach adenocarcinoma (STAD), and colon adenocarcinoma (COAD) were significantly mitigated by over-expression of CDK4. Taken together, this study expands the understanding of epigenetic mechanisms involved in tumorigenesis and identifies the METTL1/CDK4 axis as a potential therapeutic target for digestive system tumors.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Carcinogênese/genética , Proliferação de Células , Metiltransferases/genética , Quinase 4 Dependente de Ciclina/genética
9.
Mol Ther ; 31(6): 1596-1614, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35965412

RESUMO

Radiofrequency heat ablation is an ideal radical treatment for hepatocellular carcinoma (HCC). However, insufficient radiofrequency ablation (IRFA) could lead to high recurrence of HCC. N7-methylguanosine (m7G) on tRNAs, an evolutionally conservative modification in mammals and yeast, modulates heat stress responses and tumor progression, while its function in HCC recurrence after IRFA remains unknown. Here, we found that IRFA significantly upregulates the level of m7G tRNA modification and its methyltransferase complex components METTL1/WDR4 in multiple systems including HCC patient-derived xenograft (PDX) mouse, patients' HCC tissues, sublethal-heat-treated models of HCC cell lines, and organoids. Functionally, gain-/loss-of-function assays showed that METTL1-mediated m7G tRNA modification promotes HCC metastasis under sublethal heat exposure both in vitro and in vivo. Mechanistically, we found that METTL1 and m7G tRNA modification enhance the translation of SLUG/SNAIL in a codon frequency-dependent manner under sublethal heat stress. Overexpression of SLUG/SNAIL rescued the malignant potency of METTL1 knockdown HCC cells after sublethal heat exposure. Our study uncovers the key functions of m7G tRNA modification in heat stress responses and HCC recurrence after IRFA, providing molecular basis for targeting METTL1-m7G-SLUG/SNAIL axis to prevent HCC metastasis after radiofrequency heat ablation treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , RNA de Transferência/genética , Mamíferos , Proteínas de Ligação ao GTP/metabolismo
10.
Mol Ther ; 29(12): 3422-3435, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371184

RESUMO

Mis-regulated epigenetic modifications in RNAs are associated with human cancers. The transfer RNAs (tRNAs) are the most heavily modified RNA species in cells; however, little is known about the functions of tRNA modifications in cancers. In this study, we uncovered that the expression levels of tRNA N7-methylguanosine (m7G) methyltransferase complex components methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) are significantly elevated in human lung cancer samples and negatively associated with patient prognosis. Impaired m7G tRNA modification upon METTL1/WDR4 depletion resulted in decreased cell proliferation, colony formation, cell invasion, and impaired tumorigenic capacities of lung cancer cells in vitro and in vivo. Moreover, gain-of-function and mutagenesis experiments revealed that METTL1 promoted lung cancer growth and invasion through regulation of m7G tRNA modifications. Profiling of tRNA methylation and mRNA translation revealed that highly translated mRNAs have higher frequencies of m7G tRNA-decoded codons, and knockdown of METTL1 resulted in decreased translation of mRNAs with higher frequencies of m7G tRNA codons, suggesting that tRNA modifications and codon usage play an essential function in mRNA translation regulation. Our data uncovered novel insights on mRNA translation regulation through tRNA modifications and the corresponding mRNA codon compositions in lung cancer, providing a new molecular basis underlying lung cancer progression.


Assuntos
Neoplasias Pulmonares , Biossíntese de Proteínas , Uso do Códon , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Neoplasias Pulmonares/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA de Transferência/genética
11.
Biochem Biophys Res Commun ; 527(3): 791-798, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32430183

RESUMO

Transplantation of endothelial progenitor cells (EPCs) has high therapeutic potential for ischemia-related ailments like heart attacks and claudication. Due to limited EPC sources, direct reprogramming is a fast-developing way to convert human-induced pluripotent stem cells (hiPSCs) into EPCs fit for transplantation. However, the procedural efficacy was affected by multiple factors, including epigenetic modifications. Recent studies have shown that m7G methylation mediated by Methyltransferase like 1 (METTL1) is required for mouse embryonic stem cells (mESCs) to differentiate normally. Yet, its contributions to EPC differentiation still require elucidation. Here, using immunofluorescence microscopy and Fluorescence-activated Cell Sorting (FACS), we found that the typical EPC markers were significantly increased in METTL1 knockdown (METTL1-KD) hiPSCs-derived EPCs compared to those of control types. In addition, we found that METTL1 knockdown activates the MAPK/ERK signaling pathway during EPCs differentiation from hiPSCs. Furthermore, functional properties of METTL1-KD EPCs were significantly raised above those of control hiPSCs-derived EPCs. Moreover, we proved that METTL1-KD hiPSCs-derived EPCs significantly accelerate vascular smooth muscle cell proliferation and 'phenotype switching' through a co-culture system. To sum up, our results demonstrate that METTL1-KD significantly promotes the differentiation of EPCs along with their in vitro functions, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. This enhances current knowledge of EPC generation from hiPSCs and presents a new therapeutic target of vascular diseases.


Assuntos
Células Progenitoras Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Sistema de Sinalização das MAP Quinases , Metiltransferases/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metiltransferases/genética
12.
Cancer Med ; 13(13): e7420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967523

RESUMO

INTRODUCTION: Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS: Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS: The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Metiltransferases , Camundongos Nus , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
J Exp Clin Cancer Res ; 43(1): 154, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822363

RESUMO

BACKGROUND: RNA modifications of transfer RNAs (tRNAs) are critical for tRNA function. Growing evidence has revealed that tRNA modifications are related to various disease processes, including malignant tumors. However, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7G tRNA modifications in breast cancer (BC) remain largely obscure. METHODS: The biological role of METTL1 in BC progression were examined by cellular loss- and gain-of-function tests and xenograft models both in vitro and in vivo. To investigate the change of m7G tRNA modification and mRNA translation efficiency in BC, m7G-methylated tRNA immunoprecipitation sequencing (m7G tRNA MeRIP-seq), Ribosome profiling sequencing (Ribo-seq), and polysome-associated mRNA sequencing were performed. Rescue assays were conducted to decipher the underlying molecular mechanisms. RESULTS: The tRNA m7G methyltransferase complex components METTL1 and WD repeat domain 4 (WDR4) were down-regulated in BC tissues at both the mRNA and protein levels. Functionally, METTL1 inhibited BC cell proliferation, and cell cycle progression, relying on its enzymatic activity. Mechanistically, METTL1 increased m7G levels of 19 tRNAs to modulate the translation of growth arrest and DNA damage 45 alpha (GADD45A) and retinoblastoma protein 1 (RB1) in a codon-dependent manner associated with m7G. Furthermore, in vivo experiments showed that overexpression of METTL1 enhanced the anti-tumor effectiveness of abemaciclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor. CONCLUSION: Our study uncovered the crucial tumor-suppressive role of METTL1-mediated tRNA m7G modification in BC by promoting the translation of GADD45A and RB1 mRNAs, selectively blocking the G2/M phase of the cell cycle. These findings also provided a promising strategy for improving the therapeutic benefits of CDK4/6 inhibitors in the treatment of BC patients.


Assuntos
Neoplasias da Mama , Metiltransferases , RNA de Transferência , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Camundongos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Metilação , Linhagem Celular Tumoral , Proliferação de Células , Carcinogênese/genética , Pontos de Checagem do Ciclo Celular , Biossíntese de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
14.
Adv Sci (Weinh) ; 11(29): e2308769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810124

RESUMO

Cardiac hypertrophy is a key factor driving heart failure (HF), yet its pathogenesis remains incompletely elucidated. Mettl1-catalyzed RNA N7-methylguanosine (m7G) modification has been implicated in ischemic cardiac injury and fibrosis. This study aims to elucidate the role of Mettl1 and the mechanism underlying non-ischemic cardiac hypertrophy and HF. It is found that Mettl1 is upregulated in human failing hearts and hypertrophic murine hearts following transverse aortic constriction (TAC) and Angiotensin II (Ang II) infusion. YY1 acts as a transcriptional factor for Mettl1 during cardiac hypertrophy. Mettl1 knockout alleviates cardiac hypertrophy and dysfunction upon pressure overload from TAC or Ang II stimulation. Conversely, cardiac-specific overexpression of Mettl1 results in cardiac remodeling. Mechanically, Mettl1 increases SRSF9 expression by inducing m7G modification of SRSF9 mRNA, facilitating alternative splicing and stabilization of NFATc4, thereby promoting cardiac hypertrophy. Moreover, the knockdown of SRSF9 protects against TAC- or Mettl1-induced cardiac hypertrophic phenotypes in vivo and in vitro. The study identifies Mettl1 as a crucial regulator of cardiac hypertrophy, providing a novel therapeutic target for HF.


Assuntos
Cardiomegalia , Modelos Animais de Doenças , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Camundongos , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Masculino , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Cell Signal ; 118: 111145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493882

RESUMO

BACKGROUND: The N7-methylguanosine (m7G), a modification at defined internal positions within tRNAs and rRNAs, is correlated with tumor progression. Methyltransferase like 1 (METTL1)/ WD repeat domain 4 (WDR4) mediated tRNA m7G modification, which could alter many oncogenic mRNAs translation to promote progress of multiple cancer types. However, whether and how the internal mRNA m7G modification is involved in tumorigenesis remains unclear. METHODS: The immunohistochemistry assay was conducted to detect the expression of WDR4 and METTL1 in hepatocellular carcinoma (HCC) and the expression of both genes whether contributes to the prognosis of the survival rate of HCC patients. Then, CCK8, colony formation assays and tumor xenograft models were conducted to determine the effects of WDR4 on HCC cells in vitro and vivo. Besides, dot blot assay, m7G-MeRIP-seq and RNA-seq analysis were conducted to determine whether WDR4 contributes to m7G modification and underlying mechanism in HCC cells. Finally, rescue and CO-IP assay were conducted to explore whether WDR4 and METTL1 proteins form a complex in Huh7 cells. RESULTS: WDR4 modulates m7G modification at the internal sites of tumor-promoting mRNAs by forming the WDR4-METTL1 complex. WDR4 knockdown downregulated the expression of mRNA and protein levels of METTL1 gene and thus further modulate the formation of WDR4-METTL1 complex indirectly. METTL1 expression was markedly correlated with WDR4 expression in HCC tissues. HCC patients with high expression of both genes had a poor prognosis. CONCLUSIONS: WDR4 may contribute to HCC pathogenesis by interacting with and regulating the expression of METTL1 to synergistically modulate the m7G modification of target mRNAs in tumor cells.


Assuntos
Carcinoma Hepatocelular , Guanosina/análogos & derivados , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Mensageiro/genética , Proteínas de Ligação ao GTP , Metiltransferases
16.
Transl Res ; 268: 28-39, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38280546

RESUMO

Tyrosine kinase inhibitors (TKIs) are frequently utilized in the management of malignant tumors. Studies have indicated that anlotinib has a significant inhibitory effect on oral squamous cell carcinoma (OSCC). However, the mechanisms underlying the development of resistance with long-term anlotinib treatment remain obscure. Our research found that METTL1 expression was heightened in anlotinib-resistant OSCC cells. We observed that METTL1 played a role in fostering resistance to anlotinib in both transgenic mouse models and in vitro. Mechanistically, the elevated METTL1 levels in anlotinib-resistant OSCC cells contributed to enhanced global mRNA translation and stimulated oxidative phosphorylation (OXPHOS) through m7G tRNA modification. Bioenergetic profiling demonstrated that METTL1 drived a metabolic shift from glycolysis to OXPHOS in anlotinib-resistant OSCC cells. Additionally, inhibition of OXPHOS biochemically negated METTL1's impact on anlotinib resistance. Overall, this study underscores the pivotal role of METTL1-mediated m7G tRNA modification in anlotinib resistance and lays the groundwork for novel therapeutic interventions to counteract resistance in OSCC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis , Metiltransferases , Neoplasias Bucais , Quinolinas , RNA de Transferência , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Indóis/farmacologia , Reprogramação Metabólica , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Transgênicos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Quinolinas/farmacologia , RNA de Transferência/metabolismo , RNA de Transferência/genética
17.
J Exp Clin Cancer Res ; 43(1): 230, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153969

RESUMO

BACKGROUND: tRNA-derived small RNAs (tsRNAs) are newly discovered non-coding RNA, which are generated from tRNAs and are reported to participate in several biological processes in diseases, especially cancer; however, the mechanism of tsRNA involvement in colorectal cancer (CRC) and 5-fluorouracil (5-FU) is still unclear. METHODS: RNA sequencing was performed to identify differential expression of tsRNAs in CRC tissues. CCK8, colony formation, transwell assays, and tumor sphere assays were used to investigate the role of tsRNA-GlyGCC in 5-FU resistance in CRC. TargetScan and miRanda were used to identify the target genes of tsRNA-GlyGCC. Biotin pull-down, RNA pull-down, luciferase assay, ChIP, and western blotting were used to explore the underlying molecular mechanisms of action of tsRNA-GlyGCC. The MeRIP assay was used to investigate the N(7)-methylguanosine RNA modification of tsRNA-GlyGCC. RESULTS: In this study, we uncovered the feature of tsRNAs in human CRC tissues and confirmed a specific 5' half tRNA, 5'tiRNA-Gly-GCC (tsRNA-GlyGCC), which is upregulated in CRC tissues and modulated by METTL1-mediated N(7)-methylguanosine tRNA modification. In vitro and in vivo experiments revealed the oncogenic role of tsRNA-GlyGCC in 5-FU drug resistance in CRC. Remarkably, our results showed that tsRNA-GlyGCC modulated the JAK1/STAT6 signaling pathway by targeting SPIB. Poly (ß-amino esters) were synthesized to assist the delivery of 5-FU and tsRNA-GlyGCC inhibitor, which effectively inhibited tumor growth and enhanced CRC sensitive to 5-FU without obvious adverse effects in subcutaneous tumor. CONCLUSIONS: Our study revealed a specific tsRNA-GlyGCC-engaged pathway in CRC progression. Targeting tsRNA-GlyGCC in combination with 5-FU may provide a promising nanotherapeutic strategy for the treatment of 5-FU-resistance CRC.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Animais , RNA de Transferência/genética , RNA de Transferência/metabolismo , Linhagem Celular Tumoral , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Pequeno RNA não Traduzido/genética
18.
Exp Hematol Oncol ; 13(1): 8, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268051

RESUMO

BACKGROUND: RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m7G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined. METHODS: METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements. RESULTS: METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m7G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells. CONCLUSIONS: Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.

19.
Cell Biosci ; 13(1): 183, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779199

RESUMO

BACKGROUND: N7-methylguanosine (m7G) is one of the most conserved modifications in nucleosides impacting mRNA export, splicing, and translation. However, the precise function and molecular mechanism of internal mRNA m7G methylation in adult hippocampal neurogenesis and neurogenesis-related Alzheimer's disease (AD) remain unknown. RESULTS: We profiled the dynamic Mettl1/Wdr4 expressions and m7G modification during neuronal differentiation of neural stem cells (NSCs) in vitro and in vivo. Adult hippocampal neurogenesis and its molecular mechanisms were examined by morphology, biochemical methods and biological sequencing. The translation efficiency of mRNA was detected by polysome profiling. The stability of Sptbn2 mRNA was constructed by RNA stability assay. APPswe/PS1ΔE9 (APP/PS1) double transgenic mice were used as model of AD. Morris water maze was used to detect the cognitive function. METHODS: We found that m7G methyltransferase complex Mettl1/Wdr4 as well as m7G was significantly elevated in neurons. Functionally, silencing Mettl1 in neural stem cells (NSCs) markedly decreased m7G modification, neuronal genesis and proliferation in addition to increasing gliogenesis, while forced expression of Mettl1 facilitated neuronal differentiation and proliferation. Mechanistically, the m7G modification of Sptbn2 mRNA by Mettl1 enhanced its stability and translation, which promoted neurogenesis. Importantly, genetic defciency of Mettl1 reduced hippocampal neurogenesis and spatial memory in the adult mice. Furthermore, Mettl1 overexpression in the hippocampus of APP/PS1 mice rescued neurogenesis and behavioral defects. CONCLUSION: Our findings unravel the pivotal role of internal mRNA m7G modification in Sptbn2-mediated neurogenesis, and highlight Mettl3 regulation of neurogenesis as a novel therapeutic target in AD treatment.

20.
BMC Med Genomics ; 16(1): 179, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528384

RESUMO

N7 methylguanosine (m7G) has a crucial role the development of hepatocellular carcinoma (HCC). This study aimed to investigate the impact of the m7G methylation core genes (METTL1 and WDR4) and associated RNA risk signatures on HCC. we found m7G methylation core genes (METTL1 and WDR4) were upregulated in four HCC cell lines, and downregulation of METTL1 and WDR4 attenuated HCC cell proliferation, migration, and invasion. Moreover, METTL1 and WDR4 are upregulated in HCC tissues, and that there is a significant positive correlation between them. METTL1 and WDR4 were identified as independent prognostic markers for HCC by employing overall survival (OS), disease-specific survival (DSS), Progression Free Interval survival (PFI), and univariate/multivariate Cox analyses. We identified 1479 coding RNAs (mRNAs) and 232 long non-coding RNAs (lncRNAs) associated with METTL1 / WDR4 by using weighted coexpression network analysis (WGCNA) and co-clustering analysis. The least absolute shrinkage and selection operator (lasso) were used to constructing mRNA and lncRNA risk signatures associated with the METTL1 / WDR4. These risk were independent poor prognostic factors in HCC. Furthermore, we found that METTL1 / WDR4 expression and mRNA / lncRNA risk scores were closely associated with TP53 mutations. Clinicopathological features correlation results showed that METTL1 / WDR4 expression and mRNA / lncRNA risk score were associated with the stage and invasion depth (T) of HCC. To predict the overall survival of HCC individuals, we constructed a nomogram with METTL1/WDR4 expression, mRNA/lncRNA risk score, and clinicopathological features. In addition, we combined single-cell sequencing datasets and immune escape-related checkpoints to construct an immune escape-related protein-protein interaction(PPI) network. In conclusion, M7G methylated core genes (METTL1 and WDR4) and associated RNA risk signatures are associated with prognosis and immune escape in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Neoplasias Hepáticas/genética , Prognóstico , Linhagem Celular , Proteínas de Ligação ao GTP , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA