Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587122

RESUMO

The sperm flagellum is essential for male fertility, and defects in flagellum biogenesis are associated with male infertility. Deficiency of coiled-coil domain-containing (CCDC) 42 (CCDC42) is specifically associated with malformation of mouse sperm flagella. Here, we find that the testis-specific protein CCDC38 interacts with CCDC42, localizing on the manchette and sperm tail during spermiogenesis. Inactivation of CCDC38 in male mice results in a distorted manchette, multiple morphological abnormalities of the flagella of spermatozoa and eventually male sterility. Furthermore, we find that CCDC38 interacts with intraflagellar transport protein 88 (IFT88), as well as outer dense fibrous 2 (ODF2), and the knockout of Ccdc38 reduces transport of ODF2 to the flagellum. Altogether, our results uncover the essential role of CCDC38 in sperm flagellum biogenesis, and suggest that some mutations of these genes might be associated with male infertility in humans.


Assuntos
Fertilidade , Infertilidade Masculina , Cauda do Espermatozoide , Animais , Fertilidade/genética , Proteínas de Choque Térmico/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
2.
Mol Ther ; 32(4): 1048-1060, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369752

RESUMO

The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.


Assuntos
Antineoplásicos , Imunoconjugados , Preparações Farmacêuticas , Aminoácidos , Imunoconjugados/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
3.
Am J Hum Genet ; 108(8): 1466-1477, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34237282

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF)-induced asthenoteratozoospermia is a common cause of male infertility. Previous studies have identified several MMAF-associated genes, highlighting the condition's genetic heterogeneity. To further define the genetic causes underlying MMAF, we performed whole-exome sequencing in a cohort of 643 Chinese MMAF-affected men. Bi-allelic DNAH10 variants were identified in five individuals with MMAF from four unrelated families. These variants were either rare or absent in public population genome databases and were predicted to be deleterious by multiple bioinformatics tools. Morphological and ultrastructural analyses of the spermatozoa obtained from men harboring bi-allelic DNAH10 variants revealed striking flagellar defects with the absence of inner dynein arms (IDAs). DNAH10 encodes an axonemal IDA heavy chain component that is predominantly expressed in the testes. Immunostaining analysis indicated that DNAH10 localized to the entire sperm flagellum of control spermatozoa. In contrast, spermatozoa from the men harboring bi-allelic DNAH10 variants exhibited an absence or markedly reduced staining intensity of DNAH10 and other IDA components, including DNAH2 and DNAH6. Furthermore, the phenotypes were recapitulated in mouse models lacking Dnah10 or expressing a disease-associated variant, confirming the involvement of DNAH10 in human MMAF. Altogether, our findings in humans and mice demonstrate that DNAH10 is essential for sperm flagellar assembly and that deleterious bi-allelic DNAH10 variants can cause male infertility with MMAF. These findings will provide guidance for genetic counseling and insights into the diagnosis of MMAF-associated asthenoteratozoospermia.


Assuntos
Astenozoospermia/complicações , Modelos Animais de Doenças , Dineínas/genética , Infertilidade Masculina/patologia , Mutação , Fenótipo , Espermatozoides/patologia , Alelos , Animais , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/metabolismo , Sequenciamento do Exoma
4.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33472045

RESUMO

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Assuntos
Astenozoospermia/genética , Infertilidade Masculina/genética , Animais , Astenozoospermia/patologia , Astenozoospermia/fisiopatologia , Estudos de Coortes , Feminino , Deleção de Genes , Genes Ligados ao Cromossomo X , Hemizigoto , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura , Sequenciamento do Exoma
5.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792097

RESUMO

Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.


Assuntos
Infertilidade Masculina , Proteínas de Membrana , Mutação Puntual , Cauda do Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Animais , Axonema/genética , Axonema/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Splicing de RNA
6.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125190

RESUMO

Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.


Assuntos
Acrossomo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Plasma Seminal/metabolismo , Cauda do Espermatozoide/metabolismo , Animais , Fertilização , Homozigoto , Masculino , Proteínas de Membrana , Camundongos , Mutação , Fenótipo , Proteômica , Análise de Sequência de RNA , Motilidade dos Espermatozoides , Espermatogênese , Testículo
7.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913480

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenoteratozoospermia. We have identified protease serine 50 (PRSS50) as having a crucial role in sperm development, because Prss50-null mice presented with impaired fertility and sperm tail abnormalities. PRSS50 could also be involved in centrosome function because these mice showed a threefold increase in acephalic sperm (head-tail junction defect), sperm with multiple heads (spermatid division defect) and sperm with multiple tails, including novel two conjoined sperm (complete or partial parts of several flagellum on the same plasma membrane). Our data support that, in the testis, as in tumorigenesis, PRSS50 activates NFκB target genes, such as the centromere protein leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1), which is required for heterochromatin maintenance. Prss50-null testes have increased IκκB, and reduced LRWD1 and histone expression. Low levels of de-repressed histone markers, such as H3K9me3, in the Prss50-null mouse testis may cause increases in post-meiosis proteins, such as AKAP4, affecting sperm formation. We provide important insights into the complex mechanisms of sperm development, the importance of testis proteases in fertility and a novel mechanism for MMAF.


Assuntos
Fertilidade , Serina Proteases/metabolismo , Cauda do Espermatozoide/enzimologia , Testículo/enzimologia , Animais , Astenozoospermia/enzimologia , Astenozoospermia/genética , Heterocromatina/enzimologia , Heterocromatina/genética , Histonas/biossíntese , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Serina Proteases/deficiência , Cabeça do Espermatozoide/enzimologia
8.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
9.
Clin Genet ; 105(2): 220-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950557

RESUMO

Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.


Assuntos
Axonema , Infertilidade Masculina , Masculino , Humanos , Axonema/genética , Mutação , Sêmen , Cauda do Espermatozoide , Infertilidade Masculina/genética , Espermatozoides , Flagelos , Proteínas Associadas aos Microtúbulos/genética , Dineínas/genética
10.
Clin Genet ; 105(3): 317-322, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37975235

RESUMO

Sperm flagella share an evolutionary conserved microtubule-based structure with motile cilia expressed at the surface of several cell types, such as the airways epithelial cells. As a result, male infertility can be observed as an isolated condition or a syndromic trait, illustrated by Primary Cilia Dyskinesia (PCD). We report two unrelated patients showing multiple morphological abnormalities of the sperm flagella (MMAF) and carrying distinct homozygous truncating variants in the PCD-associated gene CCDC65. We characterized one of the identified variants (c.1208del; p.Asn403Ilefs*9), which induces the near absence of CCDC65 protein in patient sperm. In Chlamydomonas, CCDC65 ortholog (DRC2, FAP250) is a component of the Nexin-Dynein Regulatory complex (N-DRC), which interconnects microtubule doublets and coordinates dynein arms activity. In sperm cells from the patient, we also show the loss of GAS8, another component of the N-DRC, supporting a structural/functional link between the two proteins. Our work indicates that, similarly to ciliary axoneme, CCDC65 is required for sperm flagellum structure. Importantly, our work provides first evidence that mutations in the PCD-associated gene CCDC65 also cause asthenozoospermia.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Humanos , Masculino , Cauda do Espermatozoide/metabolismo , Axonema/genética , Sementes/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Dineínas/genética , Infertilidade Masculina/genética , Glicoproteínas/genética
11.
Reprod Biomed Online ; 48(5): 103765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492416

RESUMO

RESEARCH QUESTION: Is the novel homozygous nonsense variant of AK7 associated with multiple morphological abnormalities of the sperm flagella (MMAF), a specific type of oligoasthenoteratozoospermia leading to male infertility? DESIGN: Whole-exome sequencing and Sanger sequencing were performed to identify potential gene variants. Immunoblotting and immunofluorescence were applied to confirm the relationship between mutated genes and disease phenotypes. The concentration of reactive oxygen species and the rate of apoptosis were measured to evaluate the mitochondrial function of spermatozoa. Transmission electron microscopy and scanning electron microscopy were employed to observe sperm ultrastructure. RESULTS: A novel homozygous nonsense variant of AK7, c.1153A>T (p. Lys385*), was identified in two infertile siblings with asthenoteratozoospermia through whole-exome sequencing. Both immunoblotting and immunofluorescence assays showed practically complete absence of AK7 in the patient's spermatozoa. Additionally, the individual with the novel AK7 variant exhibited a phenotype characterized by severe oxidative stress and apoptosis caused by mitochondrial metabolic dysfunction of spermatozoa. Notably, remarkable flagellar defects with multiple axonemes in uniflagellate spermatozoa, accompanied by mitochondrial vacuolization, were observed; this has not been reported previously in patients with other AK7 variants. CONCLUSIONS: This study found that a novel identified homozygous nonsense variant of AK7 may be associated with MMAF-related asthenoteratozoospermia. The observed functional associations between mitochondria and sperm flagellar assembly provide evidence for potential mutual regulation between AK7 and flagella-associated proteins during spermatogenesis.


Assuntos
Adenilato Quinase , Astenozoospermia , Cauda do Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patologia , Códon sem Sentido , Sequenciamento do Exoma , Homozigoto , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mitocôndrias/ultraestrutura , Mitocôndrias/genética , Mitocôndrias/patologia , Linhagem , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/ultraestrutura , Espermatozoides/anormalidades , Adenilato Quinase/genética
12.
Mol Divers ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762686

RESUMO

Monomethyl auristatin F (MMAF), a synthetic analogue of the natural compound dolastatin 10, has garnered significant attention in cancer research due to its high potency in vitro. While previous studies have focused on modifying the N-terminal extension of the amino group and the C-terminal modification of the carboxyl group, there has been limited exploration into modifying the P1 and P5 side chains. In this study, we substituted the valine residue at the P1 position with various natural or unnatural amino acids and introduced triazole functional groups at the P5 side chain. Compounds 11k and 18d exhibited excellent inhibition on tubulin. Additionally, compound 18d demonstrated enhanced cytotoxicity against HCT116 cells compared to the parent compound MMAF, suggesting its potential as a cytotoxic payload for further antibody-drug conjugates (ADCs) development.

13.
Cell Mol Life Sci ; 81(1): 1, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038747

RESUMO

Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.


Assuntos
Infertilidade Masculina , Proteínas Associadas aos Microtúbulos , Cauda do Espermatozoide , Animais , Masculino , Camundongos , Fertilidade/genética , Proteínas de Choque Térmico/metabolismo , Infertilidade Masculina/metabolismo , Camundongos Knockout , Sêmen , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas Associadas aos Microtúbulos/genética
14.
J Assist Reprod Genet ; 41(5): 1297-1306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492154

RESUMO

PURPOSE: To identify the genetic causes of multiple morphological abnormalities in sperm flagella (MMAF) and male infertility in patients from two unrelated Han Chinese families. METHODS: Whole-exome sequencing was conducted using blood samples from the two individuals with MMAF and male infertility. Hematoxylin and eosin staining and scanning electron microscopy were performed to evaluate sperm morphology. Ultrastructural and immunostaining analyses of the spermatozoa were performed. The HEK293T cells were used to confirm the pathogenicity of the variants. RESULTS: We identified two novel homozygous missense ARMC2 variants: c.314C > T: p.P105L and c.2227A > G: p.N743D. Both variants are absent or rare in the human population genome data and are predicted to be deleterious. In vitro experiments indicated that both ARMC2 variants caused a slightly increased protein expression. ARMC2-mutant spermatozoa showed multiple morphological abnormalities (bent, short, coiled, absent, and irregular) in the flagella. In addition, the spermatozoa of the patients revealed a frequent absence of the central pair complex and disrupted axonemal ultrastructure. CONCLUSION: We identified two novel ARMC2 variants that caused male infertility and MMAF in Han Chinese patients. These findings expand the mutational spectrum of ARMC2 and provide insights into the complex causes and pathogenesis of MMAF.


Assuntos
Astenozoospermia , Sequenciamento do Exoma , Homozigoto , Infertilidade Masculina , Cauda do Espermatozoide , Espermatozoides , Adulto , Humanos , Masculino , Povo Asiático/genética , Astenozoospermia/genética , Astenozoospermia/patologia , Células HEK293 , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação/genética , Linhagem , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Espermatozoides/patologia , Espermatozoides/ultraestrutura
15.
J Assist Reprod Genet ; 41(1): 109-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831349

RESUMO

PURPOSE: Asthenozoospermia is an important cause of male infertility, and the most serious type is characterized by multiple morphological abnormalities of the sperm flagella (MMAF). However, the precise etiology of MMAF remains unknown. In the current study, we recruited a consanguineous Pakistani family with two infertile brothers suffering from primary infertility due to MMAF without obvious signs of PCD. METHODS: We performed whole-exome sequencing on DNAs of the patients, their parents, and a fertile brother and identified the homozygous missense variant (c.1490C > G (p.P497R) in NPHP4 as the candidate mutation for male infertility in this family. RESULTS: Sanger sequencing confirmed that this mutation recessively co-segregated with the MMAF in this family. In silico analysis revealed that the mutation site is conserved across different species, and the identified mutation also causes abnormalities in the structure and hydrophobic interactions of the NPHP4 protein. Different bioinformatics tools predict that NPHP4p.P497R mutation is pathogenic. Furthermore, Papanicolaou staining and scanning electron microscopy of sperm revealed that affected individuals displayed typical MMAF phenotype with a high percentage of coiled, bent, short, absent, and/or irregular flagella. Transmission electron microscopy images of the patient's spermatozoa revealed significant anomalies in the sperm flagella with the absence of a central pair of microtubules (9 + 0) in every section scored. CONCLUSIONS: Taken together, these results show that the homozygous missense mutation in NPHP4 is associated with MMAF.


Assuntos
Infertilidade Masculina , Irmãos , Humanos , Masculino , Flagelos/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Mutação de Sentido Incorreto/genética , Proteínas/genética , Sêmen , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
16.
J Assist Reprod Genet ; 41(6): 1499-1505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775994

RESUMO

In this study, we investigated the role of a newly identified homozygous variant (c.1245 + 6T > C) in the CFAP61 gene in the development of multiple morphologically abnormal flagella (MMAF) in an infertile patient. Using exome sequencing, we identified this variant, which led to exon 12 skipping and the production of a truncated CFAP61 protein. Transmission electron microscopy analysis of the patient's spermatozoa revealed various flagellar abnormalities, including defective nuclear chromatin condensation, axoneme disorganization, and mitochondria embedded in residual cytoplasmic droplets. Despite a fertilization rate of 83.3% through ICSI, there was no successful pregnancy due to poor embryo quality.Our findings suggest a link between the identified CFAP61 variant and MMAF, indicating potential disruption in radial spokes' assembly or function crucial for normal ciliary motility. Furthermore, nearly half of the observed sperm heads displayed chromatin condensation defects, possibly contributing to the low blastulation rate. This case underscores the significance of genetic counseling and testing, particularly for couples dealing with infertility and MMAF. Early identification of such genetic variants can guide appropriate interventions and improve reproductive outcomes.


Assuntos
Homozigoto , Infertilidade Masculina , Adulto , Feminino , Humanos , Masculino , Gravidez , Sequenciamento do Exoma , Flagelos/genética , Flagelos/ultraestrutura , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Splicing de RNA/genética , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
17.
Am J Hum Genet ; 107(3): 514-526, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32791035

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. Although recent studies have revealed several MMAF-associated genes and demonstrated MMAF to be a genetically heterogeneous disease, at least one-third of the cases are still not well understood for their etiology. Here, we identified bi-allelic loss-of-function variants in CFAP58 by using whole-exome sequencing in five (5.6%) unrelated individuals from a cohort of 90 MMAF-affected Chinese men. Each of the men harboring bi-allelic CFAP58 variants presented typical MMAF phenotypes. Transmission electron microscopy demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. CFAP58 is predominantly expressed in the testis and encodes a cilia- and flagella-associated protein. Immunofluorescence assays showed that CFAP58 localized at the entire flagella of control sperm and predominantly concentrated in the mid-piece. Immunoblotting and immunofluorescence assays showed that the abundances of axoneme ultrastructure markers SPAG6 and SPEF2 and a mitochondrial sheath protein, HSP60, were significantly reduced in the spermatozoa from men harboring bi-allelic CFAP58 variants. We generated Cfap58-knockout mice via CRISPR/Cas9 technology. The male mice were infertile and presented with severe flagellar defects, consistent with the sperm phenotypes in MMAF-affected men. Overall, our findings in humans and mice strongly suggest that CFAP58 plays a vital role in sperm flagellogenesis and demonstrate that bi-allelic loss-of-function variants in CFAP58 can cause axoneme and peri-axoneme malformations leading to male infertility. This study provides crucial insights for understanding and counseling of MMAF-associated asthenoteratozoospermia.


Assuntos
Anormalidades Múltiplas/genética , Astenozoospermia/genética , Axonema/genética , Infertilidade Masculina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Anormalidades Múltiplas/patologia , Alelos , Animais , Astenozoospermia/fisiopatologia , Axonema/patologia , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Homozigoto , Humanos , Infertilidade Masculina/patologia , Mutação com Perda de Função/genética , Perda de Heterozigosidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Mitocôndrias/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Testículo/metabolismo , Testículo/patologia , Sequenciamento do Exoma
18.
Biol Reprod ; 109(4): 450-460, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37458246

RESUMO

Multiple morphological abnormalities of the flagella, a severe form of asthenozoospermia, can lead to male infertility. Recent studies have implicated an association between human CFAP70 deficiency and multiple morphological abnormalities of the flagella; however, the underlying biological mechanism and supporting experimental evidence in animal models remain unclear. To address this gap, we used CRISPR/Cas9 technology to generate Cfap70-deficient mice to investigate the relationship between Cfap70 deficiency and multiple morphological abnormalities of the flagella. Our findings show that the loss of CFAP70 leads to multiple morphological abnormalities of the flagella and spermiogenesis defects. Specifically, the lack of CFAP70 impairs sperm flagellum biogenesis and head shaping during spermiogenesis. Late-step spermatids from Cfap70-deficient mouse testis exhibited club-shaped sperm heads and abnormal disassembly of the manchette. Furthermore, we found that CFAP70 interacts with DNAI1 and DNAI2; Cfap70 deficiency also reduces the level of AKAP3 in sperm flagella, indicating that CFAP70 may participate in the flagellum assembly and transport of flagellar components. These findings provide compelling evidence implicating Cfap70 as a causative gene of multiple morphological abnormalities of the flagella and highlight the consequences of CFAP70 loss on flagellum biogenesis.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Animais , Humanos , Camundongos , Mutação , Flagelos/genética , Infertilidade Masculina/genética , Cauda do Espermatozoide , Espermatozoides , Proteínas de Ancoragem à Quinase A/genética
19.
J Assist Reprod Genet ; 40(9): 2175-2184, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392306

RESUMO

PURPOSE: Multiple morphological abnormalities of the sperm flagella (MMAF) are a severe form of sperm defect causing male infertility. Previous studies identified the variants in the CFAP69 gene as a MMAF-associated factor, but few cases have been reported. This study was performed to identify additional variants in CFAP69 and describe the semen characteristics and outcomes of assisted reproductive technology (ART) in CFAP69-affected couples. METHODS: Genetic testing with next-generation sequencing (NGS) panel of 22 MMAF-associated genes and Sanger sequencing was performed in a cohort of 35 infertile males with MMAF to identify pathogenic variants. Morphological, ultrastructural, and immunostaining analyses were performed to investigate the characteristics of probands' spermatozoa. ART with intracytoplasmic sperm injection (ICSI) was carried out for the affected couples to get their own progenies. RESULTS: We identified a novel frameshift variant in CFAP69 (c.2061dup, p. Pro688Thrfs*5) from a MMAF-affected infertile male with low sperm motility and malformed morphology of sperm. Furthermore, transmission electron microscopy and immunofluorescence staining revealed that the variant induced the aberrant ultrastructure and reduction of CFAP69 expression in the proband's spermatozoa. Moreover, the partner of the proband birthed a healthy girl through ICSI. CONCLUSIONS: This study expanded the variant spectrum of CFAP69 and described the good outcome of ART treatment with ICSI, which is beneficial to the molecular diagnosis, genetic counseling, and treatment of infertile males with MMAF in the future.


Assuntos
Astenozoospermia , Infertilidade Masculina , Feminino , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/terapia , Astenozoospermia/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Infertilidade Masculina/metabolismo , Mutação/genética , Técnicas de Reprodução Assistida , Sêmen , Motilidade dos Espermatozoides , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
20.
J Assist Reprod Genet ; 40(10): 2485-2492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574497

RESUMO

PURPOSE: To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS: A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS: Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS: Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Gravidez , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Sêmen , Espermatozoides , Infertilidade Masculina/genética , Mutação/genética , Dineínas do Axonema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA