Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(4): 1714-1727, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38818673

RESUMO

PURPOSE: To study implant lead tip heating because of the RF power deposition by developing mathematical models and comparing them with measurements acquired at 1.5 T and 3 T, especially to predict resonant length. THEORY AND METHODS: A simple exponential model and an adapted transmission line model for the electric field transfer function were developed. A set of wavenumbers, including that calculated from insulated antenna theory (King wavenumber) and that of the embedding medium were considered. Experiments on insulated, capped wires of varying lengths were performed to determine maximum temperature rise under RF exposure. The results are compared with model predictions from analytical expressions derived under the assumption of a constant electric field, and with those numerically calculated from spatially varying, simulated electric fields from body coil transmission. Simple expressions for the resonant length bounded between one-quarter and one-half wavelength are developed based on the roots of transcendental equations. RESULTS: The King wavenumber for both models more closely matched the experimental data with a maximum root mean square error of 9.81°C at 1.5 T and 5.71°C at 3 T compared to other wavenumbers with a maximum root mean square error of 27.52°C at 1.5 T and 22.01°C for 3 T. Resonant length was more accurately predicted compared to values solely based on the embedding medium. CONCLUSION: Analytical expressions were developed for implanted lead heating and resonant lengths under specific assumptions. The value of the wavenumber has a strong effect on the model predictions. Our work could be used to better manage implanted device lead tip heating.


Assuntos
Temperatura Alta , Eletrodos Implantados , Desenho de Equipamento , Simulação por Computador , Modelos Teóricos , Próteses e Implantes , Imageamento por Ressonância Magnética , Análise de Falha de Equipamento , Humanos
2.
Magn Reson Med ; 92(5): 2237-2245, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38968006

RESUMO

The "5 gauss line" is a phrase that is likely to be familiar to everyone working with MRI, but what is its significance, how was it defined, and what changes are currently in progress? This review explores the history of 5 gauss (0.5 mT) as a threshold for protecting against inadvertently putting cardiac pacemakers, implantable cardioverter defibrillators, and other active implantable medical devices into a "magnet mode." Additionally, it describes the background to the recent change of this threshold to 9 gauss (0.9 mT) in the International Standard IEC 60601-2-33 edition 4.0 that defines basic safety requirements for MRI. Practical implications of this change and some ongoing and emerging issues are also discussed.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Marca-Passo Artificial , Desfibriladores Implantáveis , Próteses e Implantes , Segurança de Equipamentos , Imãs , Campos Eletromagnéticos
3.
Exp Dermatol ; 33(9): e15183, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39304341

RESUMO

Tattoo pigment is expected to migrate beyond the skin to regional lymph nodes and the liver. Modern tattoo ink commonly contains metals that may pose a clinical problem during MRI examinations. This study aimed to investigate the biodistribution of iron oxide pigment to internal organs in mice. Moreover, when exposed to a static magnetic field, we studied whether any reactions followed in the tattooed skin. Twenty-seven hairless C3.Cg-Hrhr/TifBomTac mice were included; 20 were tattooed with iron oxide ink in a rectangular 3 cm2 pattern; seven were controls. Ten of the tattooed mice were exposed to a 3 T MRI scanner's static magnetic field. Following euthanasia, evaluations of dissected organs involved MRI T2*-mapping, light microscopy (LM) and metal analysis. T2*-mapping measures the relaxation times of hydrogen nuclei in water and fat, which may be affected by neighbouring ferrimagnetic particles, thus enabling the detection of iron oxide particles in organs. Elemental analysis detected a significant level of metals in the tattooed skin compared to controls, but no skin reactions occurred when exposed to a 3 T static magnetic field. No disparity was observed in the liver samples with metal analysis. T2* mapping found no significant difference between the two groups. Only minute clusters of pigment particles were observed in the liver by LM. Our results demonstrate a minimal systemic distribution of the iron oxide pigments to the liver, whereas the kidney and brain were unaffected. The static magnetic field did not trigger skin reactions in magnetic tattoos but may induce image artefacts during MRI.


Assuntos
Compostos Férricos , Imageamento por Ressonância Magnética , Tatuagem , Animais , Camundongos , Compostos Férricos/farmacocinética , Distribuição Tecidual , Fígado/metabolismo , Fígado/diagnóstico por imagem , Pele/metabolismo , Pele/diagnóstico por imagem , Camundongos Pelados , Corantes/farmacocinética , Tinta , Feminino
4.
J Cardiovasc Magn Reson ; 26(1): 100995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219955

RESUMO

Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.


Assuntos
Consenso , Desfibriladores Implantáveis , Imageamento por Ressonância Magnética , Marca-Passo Artificial , Valor Preditivo dos Testes , Humanos , Fatores de Risco , Medição de Risco , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/efeitos adversos , Tomada de Decisão Clínica , Arritmias Cardíacas/terapia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/efeitos adversos , Cardiopatias/diagnóstico por imagem , Cardiopatias/terapia
5.
Magn Reson Med ; 90(6): 2608-2626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37533167

RESUMO

PURPOSE: To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS: The implant, consisting of a generator case and a lead, measures RF-induced E $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS: The implant successfully measured RF-induced E $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION: Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Próteses e Implantes , Imagens de Fantasmas , Temperatura Alta , Ondas de Rádio
6.
Magn Reson Med ; 90(2): 686-698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036364

RESUMO

PURPOSE: The Radiofrequency (RF)-induced heating for an active implantable medical device (AIMD) with dual parallel leads is evaluated in this paper. The coupling effects between dual parallel leads are studied via simulations and experiments methods. The global transfer function technique is used to assess the RF-induced heating for dual-lead AIMDs inside four human body models. METHODS: RF-induced heating for spinal cord stimulator systems with 60 and 90 cm length leads are studied at three parallel dual-lead configurations (closely spaced, 8 mm spaced, and 40 mm spaced) and a single-lead configuration. The global transfer function method is used to develop the AIMD models of different configurations and is used for lead-tip heating assessments inside human body models. RESULTS: In simulation studies, the peak 1g specific absorption rate/temperatrue rises of dual parallel leads systems is lower than those from the single-lead system. In experimental American Society for Testing and Materials phantom studies, the temperature rises for the single-lead AIMD system can be 2.4 times higher than that from dual-lead AIMD systems. For the spinal cord stimulator systems used in the study, the statistical analysis shows the RF-induced heating of dual-lead configurations are also lower than those from the single-lead configuration inside all four human body models. CONCLUSION: For the AIMD system in this study, it shows that the coupling effects between the dual parallel leads of AIMD systems can reduce RF-induced heating. The global transfer function for different spatial distance dual-lead configurations can potentially provide a method for the RF-induced heating evaluation for dual-lead AIMD systems.


Assuntos
Calefação , Próteses e Implantes , Humanos , Simulação por Computador , Temperatura , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Temperatura Alta
7.
MAGMA ; 36(3): 439-449, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37195365

RESUMO

OBJECTIVE: Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise. MATERIALS AND METHODS: To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle). RESULTS: Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations. CONCLUSION: At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.


Assuntos
Calefação , Ondas de Rádio , Humanos , Imageamento por Ressonância Magnética/métodos , Temperatura , Imagens de Fantasmas , Temperatura Alta
8.
Neuroimage ; 264: 119691, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375783

RESUMO

Many neurological disorders are analyzed and treated with implantable electrodes. Many patients with such electrodes have to undergo MRI examinations - often unrelated to their implant - at the risk of radio-frequency induced heating. The number of electrode contact sites of these implants keeps increasing due to improvements in manufacturing and computational algorithms. Electrode grids with multiple receive channels couple to the RF fields present in MRI, but, due to their proximity, a combination of leads has a coupling response which is not a superposition of the individual leads' response. To investigate the problem of RF-induced heating of coupled multi-lead implants, temperature mapping was performed on a set of intra-cranial electroencephalogram (icEEG) electrode grid prototypes with increasing number of contact sites (1-16). Additionally, electric field measurements were used to investigate the radio-frequency heating characteristics of the implants in different media combinations, simulating the device being partially immersed inside the patient. MR measurements show RF-induced heating up to 19.6 K for the single electrode, reducing monotonically with larger number of contact sites to a minimum of 0.9 K for the largest grid. The SAR calculated from temperature measurements agrees well with electric field mapping: The same trend is visible for different insertion lengths, however, the energy dissipated by the whole implant varies with the grid size and insertion length. Thus, in the tested circumstances, a larger electrode number either reduced or had a similar risk of RF induced heating, indicating, that the size of electrode grids is a design parameter, which can be used to change an implants RF response and in turn to reduce the risk of RF induced heating and improve the safety of patient with neuro-implants undergoing MRI examinations.


Assuntos
Temperatura Alta , Ondas de Rádio , Humanos , Ondas de Rádio/efeitos adversos , Eletroencefalografia , Eletrodos Implantados/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Imagens de Fantasmas
9.
Magn Reson Med ; 87(6): 2933-2946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092097

RESUMO

PURPOSE: In this study, the effects of RF coupling on the magnitude and spatial patterns of RF-induced heating near multiple wire-like conducting implants (such as simultaneous electrical stimulation of stereoelectroencephalography electrodes) during MRI were assessed. METHODS: Simulations and experimental measurements of RF-induced temperature increases near partially immersed wire-like conductors were performed using a phantom with a transmit/receive head coil on a 3T MRI system. The conductors consisted of either a pair of wires or a single simultaneous electrical stimulation of stereoelectroencephalography electrode with multiple contacts, and the locations and lengths of the conductors were varied to study the effect of electromagnetic coupling on RF-induced heating. RESULTS: The temperature increase near a wire within the phantom was dependent not only on its own location and length, but also on the locations and lengths of the other partially immersed wires. In the configurations that were studied, the presence of a second implant could increase the heating near the tip of the conductor by as much as 95%. CONCLUSION: The level of RF-induced heating during an MR scan is affected significantly by RF coupling when more than one wire-like implant is present. In some of the configurations studied, the heating was increased by the presence of a second conductor partially immersed in the phantom. Thus, RF coupling is an important factor to consider in the assessment of safety issues for MRI when multiple implants are present.


Assuntos
Calefação , Ondas de Rádio , Eletrodos , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas
10.
Magn Reson Med ; 87(1): 509-527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397114

RESUMO

PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
11.
Magn Reson Med ; 86(4): 2156-2164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080721

RESUMO

PURPOSE: The risks of RF-induced heating of active implantable medical device (AIMD) leads during MR examinations must be well understood and realistically assessed. In this study, we evaluate the potential additional risks of broken and abandoned (cut) leads. METHODS: First, we defined a generic AIMD with a metallic implantable pulse generator (IPG) and a 100-cm long lead containing 1 or 2 wires. Next, we numerically estimated the deposited in vitro lead-tip power for an intact lead, as well as with wire breaks placed at 10 cm intervals. We studied the effect of the break size (wire gap width), as well as the presence of an intact wire parallel to the broken wire, and experimentally validated the numeric results for the configurations with maximum deposited in vitro lead-tip power. Finally, we performed a Tier 3 assessment of the deposited in vivo lead-tip power for the intact and broken lead in 4 high resolution virtual population anatomic models for over 54,000 MR examination scenarios. RESULTS: The enhancement of the deposited lead-tip power for the broken leads, compared to the intact lead, reached 30-fold in isoelectric exposure, and 16-fold in realistic clinical exposures. The presence of a nearby intact wire, or even a nearby broken wire, reduced this enhancement factor to <7-fold over the intact lead. CONCLUSION: Broken and abandoned leads can pose increased risk of RF-induced lead-tip heating to patients undergoing MR examinations. The potential enhancement of deposited in vivo lead-tip power depends on location and type of the wire break, lead design, and clinical routing of the lead, and should be carefully considered when performing risk assessment for MR examinations and MR conditional labeling.


Assuntos
Calefação , Imageamento por Ressonância Magnética , Temperatura Alta , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes/efeitos adversos , Ondas de Rádio/efeitos adversos
12.
J Cardiovasc Electrophysiol ; 32(1): 138-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146422

RESUMO

INTRODUCTION: While wideband segmented, breath-hold late gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) has been shown to suppress image artifacts associated with cardiac-implanted electronic devices (CIEDs), it may produce image artifacts in patients with arrhythmia and/or dyspnea. Single-shot LGE is capable of suppressing said artifacts. We sought to compare the performance of wideband single-shot free-breathing LGE against the standard and wideband-segmented LGEs in CIED patients. METHODS AND RESULTS: We retrospectively identified all 54 consecutive patients (mean age: 61 ± 15 years; 31% females) with CIED who had undergone CMR with standard segmented, wideband segmented, and/or wideband single-shot LGE sequences as part of quality assurance for determining best clinical practice at 1.5 T. Two raters independently graded the conspicuity of myocardial scar or normal myocardium and the presence of device artifact level on a 5-point Likert scale (1: worst; 3: acceptable; 5: best). Summed visual score (SVS) was calculated as the sum of conspicuity and artifact scores (SVS ≥ 6 defined as diagnostically interpretable). Median conspicuity and artifact scores were significantly better for wideband single-shot LGE (F = 24.2, p < .001) and wideband-segmented LGE (F = 20.6, p < .001) compared to standard-segmented LGE. Among evaluated myocardial segments, 72% were deemed diagnostically interpretable-defined as SVS ≥ 6-for standard-segmented LGE, 89% were deemed diagnostically interpretable for wideband-segmented LGE, and 94% segments were deemed diagnostically interpretable for wideband single-shot LGE. CONCLUSIONS: Wideband single-shot LGE and wideband-segmented LGE produced similarly improved image quality compared to standard LGE.


Assuntos
Desfibriladores Implantáveis , Gadolínio , Meios de Contraste , Eletrônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio , Estudos Retrospectivos
13.
J Magn Reson Imaging ; 53(6): 1646-1665, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32458559

RESUMO

During an MRI scan, the radiofrequency field from the scanner's transmit coil, but also the switched gradient fields, induce currents in any conductive object in the bore. This makes any metallic medical implant an additional risk for an MRI patient, because those currents can heat up the surrounding tissues to dangerous levels. This is one of the reasons why implants are, until today, considered a contraindication for MRI; for example, by scanner manufacturers. Due to the increasing prevalence of medical implants in our aging societies, such general exclusion is no longer acceptable. Also, it should be no longer needed, because of a much-improved safety-assessment methodology, in particular in the field of numerical simulations. The present article reviews existing literature on implant-related heating effects in MRI. Concepts for risk assessment and quantification are presented and also some first attempts towards an active safety management and risk mitigation. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.


Assuntos
Calefação , Próteses e Implantes , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Medição de Risco
14.
J Cardiovasc Magn Reson ; 23(1): 24, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33715632

RESUMO

BACKGROUND: Temporary epicardial pacing wires, implemented in patients during heart transplantation, are routinely removed before discharge. However, in some cases, these wires may remain in situ and are often considered as a contraindication for cardiovascular magnetic resonance (CMR) imaging in the future. Therefore, we aimed to provide data about safety and image quality of CMR in these patients. METHODS: This is a report on a subpopulation out of 88 patients after heart transplantation that were included in a prospective cohort study and underwent multiple CMR in their post-transplant course. During CMR, patients were monitored by electrocardiogram and all examinations were observed by a physician to document potential adverse events. Additionally, image quality was assessed by an imaging specialist. RESULTS: Nineteen of 88 patients included had temporary pacing wires in situ. These patients underwent a total of 51 CMR studies. No major adverse event and only one single, mild sensory event could be documented. All CMR studies showed preserved diagnostic image quality. Temporary pacing wires were visible in 100% of HASTE and cine sequences. In less than 50% of the examinations, temporary pacing wires were also visible in T1 and T2 mapping, short tau inversion recovery (STIR), and late gadolinium enhancement (LGE) sequences, without any impairment of image quality. CONCLUSIONS: With a low event rate of only one mild adverse event during 51 CMR examinations (2%), CMR appears to be safe in patients with retained temporary epicardial pacing wires after heart transplantation. Moreover, image quality was not impaired by the presence of pacing wires.


Assuntos
Estimulação Cardíaca Artificial , Transplante de Coração , Imageamento por Ressonância Magnética , Marca-Passo Artificial , Adulto , Idoso , Estimulação Cardíaca Artificial/efeitos adversos , Eletrocardiografia , Feminino , Transplante de Coração/efeitos adversos , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Marca-Passo Artificial/efeitos adversos , Valor Preditivo dos Testes , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
15.
Emerg Radiol ; 28(3): 581-588, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33449260

RESUMO

PURPOSE: To evaluate the safety and image quality of extremity MR examinations performed with two MR conditional external fixators located in the MR bore. MATERIALS AND METHODS: Single-center retrospective study of a prospectively maintained imaging dataset that evaluated MR examinations of extremities in patients managed with external fixations instrumentation and imaged on a single 1.5T MR scanner. The fixation device was one of two MR-conditional instrumentation systems: DuPuy Synthes (aluminum, stainless steel, carbonium and Kevlar) or Dolphix temporary fixation system (PEEK-CA30). Safety events were recorded by the performing MR radiologic technologist. A study musculoskeletal radiologist assessed all sequences to evaluate for image quality, signal- and contrast-to-noise ratios (SNR/CNR), and injury patterns/findings. RESULTS: In the 13 men and 9 women with a mean age of 42 years (range 18 to 72 years), most patients (19/22 patients; 86%) were involved with trauma resulting in extremity injury requiring external fixation. MR examinations included 19 knee, 2 ankle, and 1 elbow examinations. There were no adverse safety events, heating that caused patient discomfort, fixation dislodgement/perturbment, or early termination of MR examinations. All examinations were of diagnostic quality. Fat-suppressed proton density sequences had significantly higher SNR and CNR compared to STIR (p = 0.01 to 0.04). The lower SNR of STIR and increased quality of fat-suppressed proton density during the study period led to the STIR sequence being dropped in standard MR protocol. CONCLUSION: MR of the extremity using the two study MR conditional external fixators within the MR bore is safe and feasible.


Assuntos
Fixadores Externos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Extremidades , Feminino , Fixação de Fratura , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
16.
Magn Reson Med ; 84(4): 2103-2116, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32301176

RESUMO

PURPOSE: Deep brain stimulation electrodes composed of carbon fibers were tested as a means of administering and imaging magnetic resonance electrical impedance tomography (MREIT) currents. Artifacts and heating properties of custom carbon-fiber deep brain stimulation (DBS) electrodes were compared with those produced with standard DBS electrodes. METHODS: Electrodes were constructed from multiple strands of 7-µm carbon-fiber stock. The insulated carbon electrodes were matched to DBS electrode diameter and contact areas. Images of DBS and carbon electrodes were collected with and without current flow and were compared in terms of artifact and thermal effects in phantoms or tissue samples in 7T imaging conditions. Effects on magnetic flux density and current density distributions were also assessed. RESULTS: Carbon electrodes produced magnitude artifacts with smaller FWHM values compared to the magnitude artifacts around DBS electrodes in spin echo and gradient echo imaging protocols. DBS electrodes appeared 269% larger than actual size in gradient echo images, in sharp contrast to the negligible artifact observed in diameter-matched carbon electrodes. As expected, larger temperature changes were observed near DBS electrodes during extended RF excitations compared with carbon electrodes in the same phantom. Magnitudes and distribution of magnetic flux density and current density reconstructions were comparable for carbon and DBS electrodes. CONCLUSION: Carbon electrodes may offer a safer, MR-compatible method for administering neuromodulation currents. Use of carbon-fiber electrodes should allow imaging of structures close to electrodes, potentially allowing better targeting, electrode position revision, and the facilitation of functional imaging near electrodes during neuromodulation.


Assuntos
Estimulação Encefálica Profunda , Campos Eletromagnéticos , Carbono , Eletrodos , Eletrodos Implantados , Imageamento por Ressonância Magnética
17.
Magn Reson Med ; 83(1): 352-366, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31385628

RESUMO

PURPOSE: To establish peripheral nerve stimulation (PNS) thresholds for an ultra-high performance magnetic field gradient subsystem (simultaneous 200-mT/m gradient amplitude and 500-T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42-cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. METHODS: The MAGNUS head gradient was installed in a whole-body 3T scanner with a custom 16-rung bird-cage transmit/receive RF coil compatible with phased-array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2-4 cm in the superior-inferior and anterior-posterior directions. RESULTS: The x-axis (left-right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z-axis (superior-inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y-axis (anterior-posterior) stimulation was negligible. X-axis and z-axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x-axis and z-axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise-to-diffusion contrast as compared with whole-body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). CONCLUSION: The PNS threshold of MAGNUS is significantly higher than that for whole-body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Elétrica , Campos Magnéticos , Neuroimagem/instrumentação , Neuroimagem/métodos , Nervos Periféricos/diagnóstico por imagem , Sistema Nervoso Periférico/diagnóstico por imagem , Adulto , Algoritmos , Desenho de Equipamento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/fisiologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Imagem Corporal Total
18.
Magn Reson Med ; 84(6): 3468-3484, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639681

RESUMO

PURPOSE: To implement a modular, flexible, open-source hardware configuration for parallel transmission (pTx) experiments on medical implant safety and to demonstrate real-time mitigation strategies for radio frequency (RF) induced implant heating based on sensor measurements. METHODS: The hardware comprises a home-built 8-channel pTx system (scalable to 32-channels), wideband power amplifiers and a positioning system with submillimeter precision. The orthogonal projection (OP) method is used to mitigate RF induced tip heating and to maintain sufficient B1+ for imaging. Experiments are performed at 297MHz and inside a clinical 3T MRI using 8-channel pTx RF coils, a guidewire substitute inside a phantom with attached thermistor and time-domain E-field probes. RESULTS: Repeatability and precision are ~3% for E-field measurements including guidewire repositioning, ~3% for temperature slopes and an ~6% root-mean-square deviation between B1+ measurements and simulations. Real-time pTx mitigation with the OP mode reduces the E-fields everywhere within the investigated area with a maximum reduction factor of 26 compared to the circularly polarized mode. Tip heating was measured with ~100 µK resolution and ~14 Hz sampling frequency and showed substantial reduction for the OP vs CP mode. CONCLUSION: The pTx medical implant safety testbed presents a much-needed flexible and modular hardware configuration for the in-vitro assessment of implant safety, covering all field strengths from 0.5-7 T. Sensor based real-time mitigation strategies utilizing pTx and the OP method allow to substantially reduce RF induced implant heating while maintaining sufficient image quality without the need for a priori knowledge based on simulations or in-vitro testing.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
19.
Magn Reson Med ; 84(2): 1048-1060, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961965

RESUMO

PURPOSE: To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS: A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS: The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION: This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.


Assuntos
Catéteres , Ondas de Rádio , Impedância Elétrica , Retroalimentação , Imageamento por Ressonância Magnética , Imagens de Fantasmas
20.
J Magn Reson Imaging ; 51(2): 331-338, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31355502

RESUMO

The need for a guidance document on MR safe practices arose from a growing awareness of the MR environment's potential risks and adverse event reports involving patients, equipment, and personnel. Initially published in 2002, the American College of Radiology White Paper on MR Safety established de facto industry standards for safe and responsible practices in clinical and research MR environments. The most recent version addresses new sources of risk of adverse events, increases awareness of dynamic MR environments, and recommends that those responsible for MR medical director safety undergo annual MR safety training. With regular updates to these guidelines, the latest MR safety concerns can be accounted for to ensure a safer MR environment where dangers are minimized. Level of Evidence: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:331-338.


Assuntos
Imageamento por Ressonância Magnética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA