Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Pediatr ; 24(1): 517, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127642

RESUMO

BACKGROUND: BCR::ABL1-like or Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) was first reported in 2009. Ph-like ALL is characterized by gene signature similar to Philadelphia chromosome ALL, but without BCR::ABL1 fusions. Molecularly, Ph-like ALL is divided into seven categories, with CRLF2 and ABL-class rearrangements being the two most common subtypes, exhibiting alterations in distinct downstream signaling cascades. CASE PRESENTATION: We report a rare case of pediatric Ph-like ALL with concomitant CRLF2 and ABL1 rearrangements. CRLF2 was fused with P2RY8, its most common fusion partner, whereas ABL1 was fused with MYO18B, a novel fusion partner that has not been previously reported. The 4-year-old female patient was treated using the national multicenter CCCG-ALL-2020 protocol with the addition of dasatinib at the end of induction when ABL1 rearrangement was confirmed by RNA-seq. Morphologically and molecularly, the patient remained in continuous remission until the last follow-up. To the best of our knowledge, this is the first case of Ph-like ALL harboring two distinct rearrangement categories. CONCLUSIONS: Our results identified that ABL1 rearrangement and CRLF2 rearrangement can coexist. The application of FISH, whole transcription sequencing, PCR can help us to have a more comprehensive understanding of ALL cytogenetics and molecular biology. Further studies are needed to explore the role of targeted therapies in such rare clinical scenarios.


Assuntos
Rearranjo Gênico , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Citocinas , Humanos , Feminino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pré-Escolar , Receptores de Citocinas/genética , Proteínas Proto-Oncogênicas c-abl/genética
2.
Hum Mutat ; 43(1): 74-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747535

RESUMO

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.


Assuntos
Neurilemoma , Neurofibromatoses , Cromossomos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética
3.
Front Physiol ; 15: 1401717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784114

RESUMO

Initially, the two members of class 18 myosins, Myo18A and Myo18B, appeared to exhibit highly divergent functions, complicating the assignment of class-specific functions. However, the identification of a striated muscle-specific isoform of Myo18A, Myo18Aγ, suggests that class 18 myosins may have evolved to complement the functions of conventional class 2 myosins in sarcomeres. Indeed, both genes, Myo18a and Myo18b, are predominantly expressed in the heart and somites, precursors of skeletal muscle, of developing mouse embryos. Genetic deletion of either gene in mice is embryonic lethal and is associated with the disorganization of cardiac sarcomeres. Moreover, Myo18Aγ and Myo18B localize to sarcomeric A-bands, albeit the motor (head) domains of these unconventional myosins have been both deduced and biochemically demonstrated to exhibit negligible ATPase activity, a hallmark of motor proteins. Instead, Myo18Aγ and Myo18B presumably coassemble with thick filaments and provide structural integrity and/or internal resistance through interactions with F-actin and/or other proteins. In addition, Myo18Aγ and Myo18B may play distinct roles in the assembly of myofibrils, which may arise from actin stress fibers containing the α-isoform of Myo18A, Myo18Aα. The ß-isoform of Myo18A, Myo18Aß, is similar to Myo18Aα, except that it lacks the N-terminal extension, and may serve as a negative regulator through heterodimerization with either Myo18Aα or Myo18Aγ. In this review, we contend that Myo18Aγ and Myo18B are essential for myofibril structure and function in striated muscle cells, while α- and ß-isoforms of Myo18A play diverse roles in nonmuscle cells.

4.
Circ Genom Precis Med ; 16(1): e003761, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580305

RESUMO

BACKGROUND: Deciphering hypoplastic left heart syndrome (HLHS) pathogenesis is confounded by its genetic heterogeneity and oligogenic underpinnings. METHODS: Whole genome sequences were analyzed by 3 independent strategies to identify HLHS gene candidates, ranked by variant, gene, and disease-level metrics. RESULTS: First, a genome-wide association study of 174 cases and 853 controls revealed suggestive association with a MYO18B intron 33 variant (rs2269628-G; frequency=0.55 versus 0.39; OR, 1.97 [95% CI, 1.54-2.52]; P=6.70×10-8). Second, transmission disequilibrium testing of 161 HLHS proband-parent trios revealed overrepresentation of a MYO18B intron 42 variant (rs73154186-A; frequency=0.05; OR, 24 [95% CI, 3.2-177.4]; P=4.23×10-6). Third, rare, predicted-damaging variants were filtered in 2 multiplex families. In 141H, 2 fifth-degree relatives with HLHS shared a paternally-inherited MYO5A missense variant (p.Arg801Trp; frequency=0.00003; combined annotation-dependent depletion score=29), each with a maternally-inherited or de novo candidate modifier variant in a MYO5A-interacting conventional myosin. In 442H, a HLHS proband was compound heterozygous for MYO15A variants-a maternally-inherited pathogenic stop-gain variant co-segregating with tetralogy of Fallot and bicuspid aortic valve in maternal relatives (p.Tyr2819Ter; frequency=0.00003) and a paternally-inherited intronic variant altering a canonical transcription factor binding site (rs1277068603; frequency=0.00001; position weight matrix score=0.98). CONCLUSIONS: Collectively, these findings suggest that common and rare alleles within unconventional myosin genes are associated with HLHS susceptibility. The identified candidate MYO18B regulates cardiac sarcomerogenesis, supporting the hypothesis of intrinsic myogenic perturbation in arrested left heart development.


Assuntos
Doença da Válvula Aórtica Bicúspide , Síndrome do Coração Esquerdo Hipoplásico , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Estudo de Associação Genômica Ampla , Mutação , Padrões de Herança
5.
Gene ; 742: 144542, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184166

RESUMO

Homozygous loss-of-function variants in MYO18B have been associated with congenital myopathy, facial dysmorphism and Klippel-Feil anomaly. So far, only four patients have been reported. Comprehensive description of new cases that help to highlight recurrent features and to further delineate the phenotypic spectrum are still missing. We present the fifth case of MYO18B-associated disease in a newborn male patient. Trio exome sequencing identified the previously unreported homozygous nonsense variant c.6433C>T, p.(Arg2145*) in MYO18B (NM_032608.5). While most phenotypic features of our patient align with previously reported cases, we describe the prenatal features for the first time. Taking the phenotypic description of our patient into account, we propose that the core phenotype comprises a severe congenital myopathy with feeding difficulties in infancy and characteristic dysmorphic features.


Assuntos
Anormalidades Craniofaciais/genética , Síndrome de Klippel-Feil/genética , Hipotonia Muscular/genética , Miosinas/genética , Proteínas Supressoras de Tumor/genética , Idade de Início , Consanguinidade , Anormalidades Craniofaciais/diagnóstico , Análise Mutacional de DNA , Humanos , Lactente , Síndrome de Klippel-Feil/classificação , Síndrome de Klippel-Feil/diagnóstico , Mutação com Perda de Função , Masculino , Hipotonia Muscular/diagnóstico , Linhagem , Sequenciamento do Exoma
6.
Eur J Med Genet ; 62(8): 103701, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31195167

RESUMO

Klippel-Feil syndrome (KFS) is an exceedingly rare constitutional disorder in which a paucity of knowledge exists about the disease and its associated morbidity and mortality. We present a 4-year-old male with KFS, who notably was also diagnosed with large-cell anaplastic medulloblastoma. We evaluated the genetic basis of co-occurring KFS and medulloblastoma and the role of MYO18B as related to medulloblastoma. Constitutional and somatic variant and copy number analyses were performed from DNA-based exome studies, along with RNA-sequencing of tumor tissue, to elucidate the genetic etiology of the co-existing disease states. We identified novel constitutional compound heterozygous frameshift variants (NM_032608.5: p.Leu2257SerfsTer16 and p.Arg2220SerfsTer74) each encoding a premature stop of translation in MYO18B, consistent with a diagnosis of KFS. We did not identify any somatic variants of known relevance or disease-relevant therapeutic targets in the tumor. The somatic copy number profile was suggestive of Group 3γ medulloblastoma. Relative to pediatric brain tumors, medulloblastoma, particularly, Group 3, had increased gene expression of MYO18B. In summary, coexisting constitutional and somatic diagnoses in this patient enabled the elucidation of the genetic etiology of KFS and provided support for the role of MYO18B in tumor suppression.


Assuntos
Sequenciamento do Exoma , Síndrome de Klippel-Feil/genética , Meduloblastoma/genética , Miosinas/genética , Proteínas Supressoras de Tumor/genética , Pré-Escolar , Exoma/genética , Mutação da Fase de Leitura/genética , Heterozigoto , Humanos , Síndrome de Klippel-Feil/complicações , Síndrome de Klippel-Feil/diagnóstico , Síndrome de Klippel-Feil/patologia , Masculino , Meduloblastoma/complicações , Meduloblastoma/diagnóstico , Meduloblastoma/patologia
7.
Diagn Pathol ; 13(1): 85, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390677

RESUMO

BACKGROUND: MYO18B has been identified as a novel tumor suppressor gene in several cancers. However, its specific roles in the progression of hepatocellular carcinoma (HCC) has not been well defined. METHODS: We firstly identified the expression and prognostic values of MYO18B in HCC using TCGA cohort and our clinical data. Then, MYO18B knockdown by RNA inference was implemented to investigate the effects of MYO18B on HCC cells. Quantitative RT-PCR and Western blot were used to determine gene and protein expression levels. CCK-8 and colony formation assays were performed to examine cell proliferation capacity. Wound healing and transwell assays were used to evaluate the migration and invasion of HepG2 cells. RESULTS: MYO18B was overexpressed and correlated with poor prognosis in HCC. MYO18B expression was an independent risk factor for overall survival. Knockdown of MYO18B significantly inhibited the proliferation, migration and invasion of HepG2 cells. Meanwhile, MYO18B knockdown could effectively suppress the phosphorylation of PI3K, AKT, mTOR and P70S6K, suggesting that MYO18B might promote HCC progression by targeting PI3K/AKT/mTOR signaling pathway. CONCLUSIONS: MYO18B promoted tumor growth and migration via the activation of PI3K/AKT/mTOR signaling pathway. MYO18B might be a promising target for clinical intervention of HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Miosinas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Miosinas/genética , Invasividade Neoplásica , Fosforilação , Proteínas Supressoras de Tumor/genética
8.
Genetics ; 205(2): 725-735, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27879346

RESUMO

Myosin 18B is an unconventional myosin that has been implicated in tumor progression in humans. In addition, loss-of-function mutations of the MYO18B gene have recently been identified in several patients exhibiting symptoms of nemaline myopathy. In mouse, mutation of Myo18B results in early developmental arrest associated with cardiomyopathy, precluding analysis of its effects on skeletal muscle development. The zebrafish, frozen (fro) mutant was identified as one of a group of immotile mutants in the 1996 Tübingen genetic screen. Mutant embryos display a loss of birefringency in their skeletal muscle, indicative of disrupted sarcomeric organization. Using meiotic mapping, we localized the fro locus to the previously unannotated zebrafish myo18b gene, the product of which shares close to 50% identity with its human ortholog. Transcription of myo18b is restricted to fast-twitch myocytes in the zebrafish embryo; consistent with this, fro mutant embryos exhibit defects specifically in their fast-twitch skeletal muscles. We show that sarcomeric assembly is blocked at an early stage in fro mutants, leading to the disorganized accumulation of actin, myosin, and α-actinin and a complete loss of myofibrillar organization in fast-twitch muscles.


Assuntos
Miopatias da Nemalina/genética , Miosinas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/metabolismo , Miosinas/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
9.
J Neuromuscul Dis ; 2(3): 219-227, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858739

RESUMO

BACKGROUND: Nemaline myopathies (NM) are rare and severe muscle diseases characterized by the presence of nemaline bodies (rods) in muscle fibers. Although ten genes have been implicated in the etiology of NM, an important number of patients remain without a molecular diagnosis. OBJECTIVE: Here we describe the clinical and histopathological features of a sporadic case presenting with severe NM and cardiomyopathy. Using exome sequencing, we aimed to identify the causative gene. RESULTS: We identified a homozygous nonsense mutation in the last exon of MYO18B, leading to a truncated protein lacking the most C-terminal part. MYO18B codes for an unconventional myosin protein and it is mainly expressed in skeletal and cardiac muscles, two tissues severely affected in the patient. We showed that the mutation does not impact on mRNA stability. Immunostaining and Western blot confirmed the absence of the full-length protein. CONCLUSION: We propose MYO18B as a novel gene associated with nemaline myopathy and cardiomyopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA