Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 39(4): 285-307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792446

RESUMO

Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Hematológicas , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Medicina de Precisão , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/análise , Aprendizado de Máquina
2.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960405

RESUMO

Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.


Assuntos
Aprendizado de Máquina , Plasmídeos , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Software , Biologia Computacional/métodos , Algoritmos
3.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37864295

RESUMO

The widespread adoption of high-throughput omics technologies has exponentially increased the amount of protein sequence data involved in many salient disease pathways and their respective therapeutics and diagnostics. Despite the availability of large-scale sequence data, the lack of experimental fitness annotations underpins the need for self-supervised and unsupervised machine learning (ML) methods. These techniques leverage the meaningful features encoded in abundant unlabeled sequences to accomplish complex protein engineering tasks. Proficiency in the rapidly evolving fields of protein engineering and generative AI is required to realize the full potential of ML models as a tool for protein fitness landscape navigation. Here, we support this work by (i) providing an overview of the architecture and mathematical details of the most successful ML models applicable to sequence data (e.g. variational autoencoders, autoregressive models, generative adversarial neural networks, and diffusion models), (ii) guiding how to effectively implement these models on protein sequence data to predict fitness or generate high-fitness sequences and (iii) highlighting several successful studies that implement these techniques in protein engineering (from paratope regions and subcellular localization prediction to high-fitness sequences and protein design rules generation). By providing a comprehensive survey of model details, novel architecture developments, comparisons of model applications, and current challenges, this study intends to provide structured guidance and robust framework for delivering a prospective outlook in the ML-driven protein engineering field.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina não Supervisionado , Sequência de Aminoácidos , Exercício Físico , Proteínas/genética
4.
Stem Cells ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230167

RESUMO

Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.

5.
J Biol Chem ; 299(12): 105467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979913

RESUMO

In this study, we integrated machine learning (ML), structure-tissue selectivity-activity-relationship (STAR), and wet lab synthesis/testing to design a gastrointestinal (GI) locally activating JAK inhibitor for ulcerative colitis treatment. The JAK inhibitor achieves site-specific efficacy through high local GI tissue selectivity while minimizing the requirement for JAK isoform specificity to reduce systemic toxicity. We used the ML model (CoGT) to classify whether the designed compounds were inhibitors or noninhibitors. Then we used the regression ML model (MTATFP) to predict their IC50 against related JAK isoforms of predicted JAK inhibitors. The ML model predicted MMT3-72, which was retained in the GI tract, to be a weak JAK1 inhibitor, while MMT3-72-M2, which accumulated in only GI tissues, was predicted to be an inhibitor of JAK1/2 and TYK2. ML docking methods were applied to simulate their docking poses in JAK isoforms. Application of these ML models enabled us to limit our synthetic efforts to MMT3-72 and MMT3-72-M2 for subsequent wet lab testing. The kinase assay confirmed MMT3-72 weakly inhibited JAK1, and MMT3-72-M2 inhibited JAK1/2 and TYK2. We found that MMT3-72 accumulated in the GI lumen, but not in GI tissue or plasma, but released MMT3-72-M2 accumulated in colon tissue with minimal exposure in the plasma. MMT3-72 achieved superior efficacy and reduced p-STAT3 in DSS-induced colitis. Overall, the integration of ML, the structure-tissue selectivity-activity-relationship system, and wet lab synthesis/testing could minimize the effort in the optimization of a JAK inhibitor to treat colitis. This site-specific inhibitor reduces systemic toxicity by minimizing the need for JAK isoform specificity.


Assuntos
Colite Ulcerativa , Desenho de Fármacos , Inibidores de Janus Quinases , Humanos , Colite Ulcerativa/tratamento farmacológico , Janus Quinase 1 , Janus Quinase 2 , Inibidores de Janus Quinases/farmacologia , Isoformas de Proteínas , Aprendizado de Máquina , Relação Estrutura-Atividade
6.
Small ; 20(34): e2401238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602230

RESUMO

Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.

7.
Biotechnol Bioeng ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054738

RESUMO

Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.

8.
J Neurooncol ; 169(3): 489-496, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38958849

RESUMO

PURPOSE: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. METHODS: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. RESULTS: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. CONCLUSION: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.


Assuntos
Inteligência Artificial , Procedimentos Neurocirúrgicos , Humanos , Procedimentos Neurocirúrgicos/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Oncologia/métodos , Neoplasias do Sistema Nervoso Central/cirurgia , Neurocirurgia/métodos
9.
Anal Bioanal Chem ; 416(12): 2951-2968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507043

RESUMO

Quantitative structure-retention relationship (QSRR) modeling has emerged as an efficient alternative to predict analyte retention times using molecular descriptors. However, most reported QSRR models are column-specific, requiring separate models for each high-performance liquid chromatography (HPLC) system. This study evaluates the potential of machine learning (ML) algorithms and quantum mechanical (QM) descriptors to develop QSRR models that can predict retention times across three different reversed-phase HPLC columns under varying conditions. Four machine learning methods-partial least squares (PLS) regression, ridge regression (RR), random forest (RF), and gradient boosting (GB)-were compared on a dataset of 360 retention times for 15 aromatic analytes. Molecular descriptors were calculated using density functional theory (DFT). Column characteristics like particle size and pore size and experimental conditions like temperature and gradient time were additionally used as descriptors. Results showed that the GB-QSRR model demonstrated the best predictive performance, with Q2 of 0.989 and root mean square error of prediction (RMSEP) of 0.749 min on the test set. Feature analysis revealed that solvation energy (SE), HOMO-LUMO energy gap (∆E HOMO-LUMO), total dipole moment (Mtot), and global hardness (η) are among the most influential predictors for retention time prediction, indicating the significance of electrostatic interactions and hydrophobicity. Our findings underscore the efficiency of ensemble methods, GB and RF models employing non-linear learners, in capturing local variations in retention times across diverse experimental setups. This study emphasizes the potential of cross-column QSRR modeling and highlights the utility of ML models in optimizing chromatographic analysis.

10.
Network ; : 1-38, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511557

RESUMO

Interpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing. The performance of each feature selection technique was evaluated across multiple ML models, assessing accuracy, precision, recall, and F1-score metrics. Among these, SHAP showcased superior performance, achieving average accuracies of 80.17%, 85.13%, 90.00%, and 99.55% across diabetes, cardiovascular, statlog, and thyroid disease datasets, respectively. Notably, the LGBM emerged as the most effective algorithm, boasting an average accuracy of 91.00% for most disease states. Moreover, SHAP enhanced the interpretability of the models, providing valuable insights into the underlying mechanisms driving disease diagnosis. This comprehensive study contributes significant insights into feature selection techniques and machine learning algorithms for disease diagnosis, benefiting researchers and practitioners in the medical field. Further exploration of feature selection methods and algorithms holds promise for advancing disease diagnosis methodologies, paving the way for more accurate and interpretable diagnostic models.

11.
Environ Res ; 245: 117784, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065392

RESUMO

Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.


Assuntos
Neoplasias Gástricas , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Detecção Precoce de Câncer , Aprendizado de Máquina , Imageamento por Ressonância Magnética
12.
Mol Divers ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372837

RESUMO

Infections from multidrug-resistant (MDR) bacteria have emerged as a paramount global health concern, and the therapeutic effectiveness of current treatments is swiftly diminishing. An urgent need exists to explore innovative strategies for countering drug-resistant bacteria. Bacterial DNA gyrase, functioning as an ATP-dependent enzyme, plays a pivotal role in the intricate processes of transcription, replication, and chromosome segregation within bacterial DNA. This renders it a prime target for the development of innovative antibacterial agents. However, the experimental identification of bacterial DNA gyrase inhibitors faces multifaceted challenges due to current methodological constraints. Recognizing its significance, this study developed 56 computational models designed for predicting bacterial DNA gyrase inhibitors. These models employed seven distinct molecular fingerprints and eight machine learning algorithms. Among these models, Model_2D, created using KlekotaRoth fingerprints and the SVM algorithm, stands out as the most robust performer (ACC = 0.86, MCC = 0.63, G-mean = 0.82). Moreover, given the limited exploration of structural fragments required for DNA Gyrase B inhibitors, crucial structural fingerprints influencing DNA Gyrase B inhibitors were identified through Bayesian classification. Subsequently, we conducted molecular docking to reveal the binding modes between these crucial structural fingerprints and the active site of DNA gyrase B. In conclusion, the present study aimed to develop the optimal classification model for bacterial DNA gyrase inhibitors, offering invaluable support to medicinal chemists creating innovative DNA gyrase inhibitors.

13.
Neurosurg Rev ; 47(1): 261, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844709

RESUMO

Papillary glioneuronal tumors (PGNTs), classified as Grade I by the WHO in 2016, present diagnostic challenges due to their rarity and potential for malignancy. Xiaodan Du et al.'s recent study of 36 confirmed PGNT cases provides critical insights into their imaging characteristics, revealing frequent presentation with headaches, seizures, and mass effect symptoms, predominantly located in the supratentorial region near the lateral ventricles. Lesions often appeared as mixed cystic and solid masses with septations or as cystic masses with mural nodules. Given these complexities, artificial intelligence (AI) and machine learning (ML) offer promising advancements for PGNT diagnosis. Previous studies have demonstrated AI's efficacy in diagnosing various brain tumors, utilizing deep learning and advanced imaging techniques for rapid and accurate identification. Implementing AI in PGNT diagnosis involves assembling comprehensive datasets, preprocessing data, extracting relevant features, and iteratively training models for optimal performance. Despite AI's potential, medical professionals must validate AI predictions, ensuring they complement rather than replace clinical expertise. This integration of AI and ML into PGNT diagnostics could significantly enhance preoperative accuracy, ultimately improving patient outcomes through more precise and timely interventions.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Aprendizado de Máquina , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/diagnóstico por imagem , Glioma/patologia
14.
BMC Med Inform Decis Mak ; 24(1): 200, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039521

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) and lower extremity arterial disease (LEAD) are significant contributors to diabetic foot ulcers (DFUs), which severely affect patients' quality of life. This study aimed to develop machine learning (ML) predictive models for DPN and LEAD and to identify both shared and distinct risk factors. METHODS: This retrospective study included 479 diabetic inpatients, of whom 215 were diagnosed with DPN and 69 with LEAD. Clinical data and laboratory results were collected for each patient. Feature selection was performed using three methods: mutual information (MI), random forest recursive feature elimination (RF-RFE), and the Boruta algorithm to identify the most important features. Predictive models were developed using logistic regression (LR), random forest (RF), and eXtreme Gradient Boosting (XGBoost), with particle swarm optimization (PSO) used to optimize their hyperparameters. The SHapley Additive exPlanation (SHAP) method was applied to determine the importance of risk factors in the top-performing models. RESULTS: For diagnosing DPN, the XGBoost model was most effective, achieving a recall of 83.7%, specificity of 86.8%, accuracy of 85.4%, and an F1 score of 83.7%. On the other hand, the RF model excelled in diagnosing LEAD, with a recall of 85.7%, specificity of 92.9%, accuracy of 91.9%, and an F1 score of 82.8%. SHAP analysis revealed top five critical risk factors shared by DPN and LEAD, including increased urinary albumin-to-creatinine ratio (UACR), glycosylated hemoglobin (HbA1c), serum creatinine (Scr), older age, and carotid stenosis. Additionally, distinct risk factors were pinpointed: decreased serum albumin and lower lymphocyte count were linked to DPN, while elevated neutrophil-to-lymphocyte ratio (NLR) and higher D-dimer levels were associated with LEAD. CONCLUSIONS: This study demonstrated the effectiveness of ML models in predicting DPN and LEAD in diabetic patients and identified significant risk factors. Focusing on shared risk factors may greatly reduce the prevalence of both conditions, thereby mitigating the risk of developing DFUs.


Assuntos
Neuropatias Diabéticas , Extremidade Inferior , Aprendizado de Máquina , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Fatores de Risco , Estudos Retrospectivos , Neuropatias Diabéticas/diagnóstico , Idoso , Doença Arterial Periférica , Pé Diabético
15.
Clin Oral Investig ; 28(1): 52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163819

RESUMO

OBJECTIVES: Periodontal diseases are chronic, inflammatory disorders that involve the destruction of supporting tissues surrounding the teeth which leads to permanent damage and substantially heightens systemic exposure. If left untreated, dental, oral, and craniofacial diseases (DOCs), especially periodontitis, can increase an individual's risk in developing complex traits including cardiovascular diseases (CVDs). In this study, we are focused on systematically investigating causality between periodontitis with CVDs with the application of artificial intelligence (AI), machine learning (ML) algorithms, and state-of-the-art bioinformatics approaches using RNA-seq-driven gene expression data of CVD patients. MATERIALS AND METHODS: In this study, we built a cohort of CVD patients, collected their blood samples, and performed RNA-seq and gene expression analysis to generate transcriptomic profiles. We proposed a nexus of AI/ML approaches for the identification of significant biomarkers, and predictive analysis. We implemented recursive feature elimination, Pearson correlation, chi-square, and analysis of variance to detect significant biomarkers, and utilized random forest and support vector machines for predictive analysis. RESULTS: Our AI/ML analyses have led us to the preliminary conclusion that GAS5, GPX1, HLA-B, and SNHG6 are the potential gene markers that can be used to explain the causal relationship between periodontitis and CVDs. CONCLUSIONS: CVDs are relatively common in patients with periodontal disease, and an increased risk of CVD is associated with periodontal disease independent of gender. Genetic susceptibility contributing to periodontitis and CVDs have been suggested to some extent, based on the similar degree of heritability shared between both complex diseases.


Assuntos
Doenças Cardiovasculares , Doenças Periodontais , Periodontite , Humanos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Inteligência Artificial , Periodontite/complicações , Doenças Periodontais/complicações , Genômica , Biomarcadores , Aprendizado de Máquina
16.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001123

RESUMO

As 5G technology becomes more widespread, the significant improvement in network speed and connection density has introduced more challenges to network security. In particular, distributed denial of service (DDoS) attacks have become more frequent and complex in software-defined network (SDN) environments. The complexity and diversity of 5G networks result in a great deal of unnecessary features, which may introduce noise into the detection process of an intrusion detection system (IDS) and reduce the generalization ability of the model. This paper aims to improve the performance of the IDS in 5G networks, especially in terms of detection speed and accuracy. It proposes an innovative feature selection (FS) method to filter out the most representative and distinguishing features from network traffic data to improve the robustness and detection efficiency of the IDS. To confirm the suggested method's efficacy, this paper uses four common machine learning (ML) models to evaluate the InSDN, CICIDS2017, and CICIDS2018 datasets and conducts real-time DDoS attack detection on the simulation platform. According to experimental results, the suggested FS technique may match 5G network requirements for high speed and high reliability of the IDS while also drastically cutting down on detection time and preserving or improving DDoS detection accuracy.

17.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066007

RESUMO

In today's world, the significance of reducing energy consumption globally is increasing, making it imperative to prioritize energy efficiency in 5th-generation (5G) networks. However, it is crucial to ensure that these energy-saving measures do not compromise the Key Performance Indicators (KPIs), such as user experience, quality of service (QoS), or other important aspects of the network. Advanced wireless technologies have been integrated into 5G network designs at multiple network layers to address this difficulty. The integration of emerging technology trends, such as machine learning (ML), which is a subset of artificial intelligence (AI), and AI's rapid improvements have made the integration of these trends into 5G networks a significant topic of research. The primary objective of this survey is to analyze AI's integration into 5G networks for enhanced energy efficiency. By exploring this intersection between AI and 5G, we aim to identify potential strategies and techniques for optimizing energy consumption while maintaining the desired network performance and user experience.

18.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066103

RESUMO

As Canada's population of older adults rises, the need for aging-in-place solutions is growing due to the declining quality of long-term-care homes and long wait times. While the current standards include questionnaire-based assessments for monitoring activities of daily living (ADLs), there is an urgent need for advanced indoor localization technologies that ensure privacy. This study explores the use of Ultra-Wideband (UWB) technology for activity recognition in a mock condo in the Glenrose Rehabilitation Hospital. UWB systems with built-in Inertial Measurement Unit (IMU) sensors were tested, using anchors set up across the condo and a tag worn by patients. We tested various UWB setups, changed the number of anchors, and varied the tag placement (on the wrist or chest). Wrist-worn tags consistently outperformed chest-worn tags, and the nine-anchor configuration yielded the highest accuracy. Machine learning models were developed to classify activities based on UWB and IMU data. Models that included positional data significantly outperformed those that did not. The Random Forest model with a 4 s data window achieved an accuracy of 94%, compared to 79.2% when positional data were excluded. These findings demonstrate that incorporating positional data with IMU sensors is a promising method for effective remote patient monitoring.


Assuntos
Atividades Cotidianas , Aprendizado de Máquina , Humanos , Monitorização Ambulatorial/métodos , Monitorização Ambulatorial/instrumentação , Dispositivos Eletrônicos Vestíveis , Acelerometria/instrumentação , Acelerometria/métodos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
19.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124036

RESUMO

The accuracy of classifying motor imagery (MI) activities is a significant challenge when using brain-computer interfaces (BCIs). BCIs allow people with motor impairments to control external devices directly with their brains using electroencephalogram (EEG) patterns that translate brain activity into control signals. Many researchers have been working to develop MI-based BCI recognition systems using various time-frequency feature extraction and classification approaches. However, the existing systems still face challenges in achieving satisfactory performance due to large amount of non-discriminative and ineffective features. To get around these problems, we suggested a multiband decomposition-based feature extraction and classification method that works well, along with a strong feature selection method for MI tasks. Our method starts by splitting the preprocessed EEG signal into four sub-bands. In each sub-band, we then used a common spatial pattern (CSP) technique to pull out narrowband-oriented useful features, which gives us a high-dimensional feature vector. Subsequently, we utilized an effective feature selection method, Relief-F, which reduces the dimensionality of the final features. Finally, incorporating advanced classification techniques, we classified the final reduced feature vector. To evaluate the proposed model, we used the three different EEG-based MI benchmark datasets, and our proposed model achieved better performance accuracy than existing systems. Our model's strong points include its ability to effectively reduce feature dimensionality and improve classification accuracy through advanced feature extraction and selection methods.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroencefalografia/métodos , Humanos , Algoritmos , Processamento de Sinais Assistido por Computador , Imaginação/fisiologia , Encéfalo/fisiologia
20.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257428

RESUMO

The implementation of power line communications (PLC) in smart electricity grids provides us with exciting opportunities for real-time cable monitoring. In particular, effective fault classification and estimation methods employing machine learning (ML) models have been proposed in the recent past. Often, the research works presenting PLC for ML-aided cable diagnostics are based on the study of synthetically generated channel data. In this work, we validate ML-aided diagnostics by integrating measured channels. Specifically, we consider the concatenation of clustering as a data pre-processing procedure and principal component analysis (PCA)-based dimension reduction for cable anomaly detection. Clustering and PCA are trained with measurement data when the PLC network is working under healthy conditions. A possible cable anomaly is then identified from the analysis of the PCA reconstruction error for a test sample. For the numerical evaluation of our scheme, we apply an experimental setup in which we introduce degradations to power cables. Our results show that the proposed anomaly detector is able to identify a cable degradation with high detection accuracy and low false alarm rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA