Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 184: 105128, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715066

RESUMO

Many cases of insecticide resistance in insect pests give resulting no-cost strains that retain the resistance genes even in the absence of the toxic stressor. Malathion (rac-diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]succinate) has been widely used against the red flour beetle, Tribolium castaneum Herbst. in stored products although no longer used. Malathion specific resistance in this pest is long lasting and widely distributed. A malathion resistant strain was challenged with a range of stressors including starvation, hyperoxia, malathion and a pathogen to determine the antioxidant responses and changes to some lifecycle parameters. Adult life span of the malathion-specific resistant strain of T. castaneum was significantly shorter than that of the susceptible. Starvation and/or high oxygen reduced adult life span of both strains. Starving, with and without 100% oxygen, gave longer lifespan for the resistant strain, but for oxygen alone there was a small extension. Under oxygen the proportional survival of the resistant strain to the adult stage was significantly higher, for both larvae and pupae, than the susceptible. The resistant strain when stressed with malathion and oxygen significantly increased catalase activity, but the susceptible did not. The resistant strain stressed with Paranosema whitei infection had significantly higher survival compared to the susceptible, and with low mortality. The malathion resistant strain of T. castaneum showed greater vigour than the susceptible in oxidative stress situations and especially where stressors were combined. The induction of the antioxidant enzyme catalase could have helped the resistant strain to withstand oxidative stresses, including insecticidal and importantly those from pathogens. These adaptations, in the absence of insecticide, seem to support the increased immunity of the insecticide resistant host to pathogens seen in other insect species, such as mosquitoes. By increasing the responses to a range of stressors the resistant strain could be considered as having enhanced fitness, compared to the susceptible.


Assuntos
Inseticidas , Tribolium , Animais , Antioxidantes , Catalase , Inseticidas/farmacologia , Malation/farmacologia , Estresse Oxidativo , Oxigênio
2.
Pestic Biochem Physiol ; 130: 44-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27155483

RESUMO

Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance.


Assuntos
Carboxilesterase/genética , Genes de Insetos/genética , Resistência a Inseticidas/genética , Malation/metabolismo , Tephritidae/genética , Animais , Carboxilesterase/metabolismo , Técnicas de Silenciamento de Genes , Filogenia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tephritidae/efeitos dos fármacos , Tephritidae/enzimologia
3.
Insects ; 13(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421946

RESUMO

A resistant strain (MRS) of Sitobion miscanthi was cultured by continuous selection with malathion for over 40 generations. The MRS exhibited 32.7-fold resistance to malathion compared to the susceptible strain (MSS) and 13.5-fold, 2.9-fold and 4.8-fold cross-resistance for omethoate, methomyl and beta-cypermethrin, respectively. However, no cross-resistance was found to imidacloprid in this resistant strain. The realized heritability for malathion resistance was 0.02. Inhibitors of esterase activity, both triphenyl phosphate (TPP) and S,S,S,-tributyl phosphorotrithioate (DEF) as synergists, exhibited significant synergism to malathion in the MRS strain, with 11.77-fold and 5.12-fold synergistic ratios, respectively, while piperonyl butoxide (PBO) and diethyl maleate (DEM) showed no significant synergism in the MRS strain. The biochemical assay indicated that carboxylesterase activity was higher in MRS than in MSS. These results suggest that the increase in esterase activity might play an important role in S. miscanthi resistance to malathion. Imidacloprid could be used as an alternative for malathion in the management of wheat aphid resistance.

4.
Pest Manag Sci ; 77(5): 2292-2301, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33423365

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS: RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION: LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , RNA Longo não Codificante , Tephritidae , Animais , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malation/farmacologia , Masculino , RNA Longo não Codificante/genética , Tephritidae/genética
5.
Pest Manag Sci ; 76(9): 2932-2943, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32400962

RESUMO

BACKGROUND: Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its resistance to insecticides is a major obstacle in successful control. Cytochrome P450s (P450s) are major metabolic enzymes associated with insecticide resistance. The genome of B. dorsalis was sequenced recently, allowing an integrated genome-wide analysis of P450 genes (P450s) and the analysis of correlations between these genes and insecticide resistance in this pest. RESULTS: Totally, 101 P450s were identified in the B. dorsalis genome and classified into four clans, 25 families and 57 subfamilies. Quantitative reverse transcription polymerase chain reaction results showed that most of these genes were highly expressed in adults (46) and in metabolic tissues, including the fatbody (63), midgut (61) and Malphagian tubules (66). In a malathion-resistant strain, 13 and 9 genes were significantly upregulated and downregulated, respectively, compared with a susceptible strain, and these genes were screened as candidate genes associated with malathion resistance. CONCLUSION: This study provides useful information for understanding the evolution and potential functions of P450s in B. dorsalis, and the results lay the foundation for further studies on the correlations between P450s and malathion resistance in B. dorsalis. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Tephritidae , Animais , Sistema Enzimático do Citocromo P-450/genética , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malation/farmacologia , Tephritidae/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-26610787

RESUMO

Epsilon glutathione S-transferases (eGSTs) play important roles in xenobiotics detoxification and insecticides resistance in insects. However, the molecular mechanisms of eGSTs-mediated insecticide resistance remain largely unknown in the Bactrocera dorsalis (Hendel), one of the most notorious pests in the world. Here, we investigated the roles of eight GST genes which belonged to epsilon class (BdGSTe1, BdGSTe2, BdGSTe3, BdGSTe4, BdGSTe5, BdGSTe6, BdGSTe7 and BdGSTe9) in conferring malathion resistance in B. dorsalis. Adult developmental stage-, sex- and tissue-specific expression patterns of the eight eGST genes were analyzed via quantitative reverse transcription PCR. The results showed that BdGSTe2, BdGSTe3, BdGSTe4 and BdGSTe9 were abundant in the midgut, fat body and Malpighian tubules. Notably, BdGSTe2, BdGSTe4 and BdGSTe9 were significantly overexpressed in a malathion-resistant (MR) strain of B. dorsalis compared to the malathion-susceptible (MS) strain. Functional expression and cytotoxicity assays showed significantly higher malathion detoxification capabilities in BdGSTe2-, BdGSTe3-, BdGSTe4- and BdGSTe9-expressing Sf9 cells compared to the parental and green fluorescent protein (GFP)-expressing Sf9 cells. Moreover, malathion susceptibility in MS adults was increased 30%, 14%, and 33% when BdGSTe2, BdGSTe3 and BdGSTe4 mRNA levels were repressed by RNA interference (RNAi)-mediated knockdown, respectively. Taken together, overexpression of the isoforms of eGSTs, including BdGSTe2, BdGSTe4, and particularly, BdGSTe9 plays an important role in the malathion resistant development in B. dorsalis.


Assuntos
Glutationa Transferase/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Malation/farmacologia , Tephritidae/efeitos dos fármacos , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Glutationa Transferase/genética , Isoenzimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA