Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(11): 4888-4904, 2022 Nov 08.
Artigo em Zh | MEDLINE | ID: mdl-36437061

RESUMO

Since the late 1970s, marine ecotoxicology began to sprout and develop in China. Based on the principles of dose-response relationships, some marine organisms are used in toxicity tests to evaluate the impact of marine pollutants on marine organisms and marine ecosystems. At the early stage, marine ecotoxicological research mainly focused on the bioaccumulation, biomagnification, and biodegradation of traditional pollutants such as heavy metals, radioactive elements, organotin, petroleum hydrocarbons, and pesticides, as well as their toxic effects on survival, growth, and other physiological indicators. With the development of Chinese industry, marine pollution has become increasingly serious. In addition to the traditional marine pollutants, toxicological research has been conducted on emerging pollutants with potential risks to marine ecosystems, such as POPs, emerging organic pollutants, nanomaterials, and microplastics. Moreover, the species of marine organisms used in toxicity testing have become more diverse. The selection of testing organisms is essential for evaluating toxicity correctly. The toxicity tests should be conducted on a variety of organisms from different trophic levels to ensure the comprehensive understanding of the impact of pollutants on marine ecosystems. The major types of marine organisms used in the toxicity testing include marine alga, protozoa, rotifera, annelida, mollusc, echinoderma, arthropoda, cephalopoda, and marine fish, which have been used in the toxicological studies of various marine pollutants. The outcome results can serve as the scientific basis for the ecological risk assessment of marine pollutants and the establishment of seawater quality criteria. It should be noted that the sensitivity of different testing organisms to different types of pollutants is quite diverse. Therefore, in addition to conducting a battery of tests on a variety of species which play important roles in marine ecosystems, elucidating the toxic mechanisms in different species is also important for marine ecotoxicological studies. The application of the above-mentioned organisms in marine ecotoxicology research in recent years is briefly reviewed here. Particularly, the six commonly used marine model species (Skeletonema costatum, Euplotes vannus, oysters, sea urchins, Tigriopus japonicus, and Oryzias melastigma) used in toxicity testing are introduced in detail.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Ecotoxicologia , Ecossistema , Plásticos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Testes de Toxicidade , Organismos Aquáticos
2.
Evodevo ; 12(1): 10, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579780

RESUMO

The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA