Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 59(7): 390-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38794798

RESUMO

Despite the extensive exposure to imidacloprid residues in food plants, there has been little research on imidacloprid residues in amaranth. The dissipation trend and residue behavior of imidacloprid were evaluated to provide guidelines for imidacloprid application on amaranth under open field and greenhouse. The dissipation rate of imidacloprid in amaranth conformed to the first-order kinetic equation, and the half-lives of imidacloprid in amaranth ranged from 0.29 days in open field to 1.29 days in the greenhouse. After 7 and 14 days from the application of imidacloprid (pesticide dosage, 45 or 67.5 g a.i./ha), the amaranth under the open field and greenhouse growth could be consumed safely with average residues of 0.19 and 0.38 mg/kg, respectively. This result demonstrated that the cultivation has the dominant influence on imidacloprid residue, and the residue of imidacloprid in amaranth planting on open field was much lower than that in the greenhouse, indicating a significant difference in the pesticide residues between the two cultivations with a p-value less than 0.05.


Assuntos
Amaranthus , Inseticidas , Neonicotinoides , Nitrocompostos , Resíduos de Praguicidas , Neonicotinoides/química , Neonicotinoides/análise , Nitrocompostos/química , Amaranthus/crescimento & desenvolvimento , Amaranthus/química , Amaranthus/efeitos dos fármacos , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Inseticidas/química , Imidazóis/química , Imidazóis/análise , Meia-Vida , Agricultura/métodos , Contaminação de Alimentos/análise , Cinética
2.
Environ Monit Assess ; 196(9): 794, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112821

RESUMO

Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Metais Pesados , Oryza , Praguicidas , Poluentes do Solo , Metais Pesados/análise , Oryza/química , Bangladesh , Medição de Risco , Praguicidas/análise , Poluentes do Solo/análise , Contaminação de Alimentos/análise , Humanos , Poluentes Químicos da Água/análise
3.
Compr Rev Food Sci Food Saf ; 22(2): 1226-1256, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710657

RESUMO

Pesticides play an important role in increasing the overall yield and productivity of agricultural foods by controlling pests, insects, and numerous plant-related diseases. However, the overuse of pesticides has resulted in pesticide contamination of food products and water bodies, as well as disruption of ecological and environmental systems. Global health authorities have set limits for pesticide residues in individual food products to ensure the availability of safe foods in the supply system and to assist farmers in developing the best agronomic practices for crop production. Therefore, the use of nondestructive testing (NDT) methods for pesticide residue detection is gaining interest in the food supply chain. The NDT techniques have several advantages, such as simultaneous measurement of chemical and physical characteristics of food without destroying the product. Although numerous studies have been conducted on NDT for pesticide residue in agro-food products, there are still challenges in real-time implementation. Further study on NDT methods is needed to establish their potential for supplementing existing methods, identifying mixed pesticides, and performing volumetric quantification (not surface accumulation alone).


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , Alimentos , Agricultura
4.
Bull Environ Contam Toxicol ; 110(2): 45, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680661

RESUMO

Pesticide use has grown rapidly in West Africa over the past decades. Regulatory capacity has not kept pace with the rapid proliferation of pesticide products and on-farm use. As a result, health and environmental impacts from the growing use of pesticides, despite their potential importance to food safety, remain largely unmonitored, underreported, and poorly understood by key stakeholders. This study protocol was the document for conducting a pesticide survey study to identify the most critically emerging pesticides across the Continent of Africa. Multiple countries were selected in this study to represent the north, east, south, and west regions of Africa. Two food commodities, maize and tomato, were chosen to monitor the pesticide level for food safety. This study protocol describes the fieldwork and laboratory work per the standards of Good Laboratory Practices (GLP) and ISO-17025 and US EPA 860 Residue Chemistry Guidelines but the survey study performed was not considered as a GLP or ISO 17025 study. This is because many steps were not able to be closely monitored per the GLP requirements. This protocol describes the requirements for a pesticide residue study in food collected from local markets. This protocol describes the test commodities, sampling methods, sample transfer/shipping, storage stability, sample analysis, sample disposal, and documentation and record keeping.


Assuntos
Resíduos de Praguicidas , Praguicidas , Solanum lycopersicum , Praguicidas/análise , Resíduos de Praguicidas/análise , Zea mays , Contaminação de Alimentos/análise , África
5.
Crit Rev Toxicol ; 52(10): 779-785, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36803174

RESUMO

Treatment of food-producing animals with veterinary medicinal products (VMPs) can result in residues in foodstuffs (e.g. eggs, meat, milk, or honey) representing a potential consumer health risk. To ensure consumer safety, worldwide regulatory concepts for setting safe limits for residues of VMPs e.g. as tolerances (US) or maximum residue limits (MRLs, EU) are used. Based on these limits so-called withdrawal periods (WP) are determined. A WP represents the minimum period of time required between the last administration of the VMP and the marketing of foodstuff. Usually, WPs are estimated using regression analysis based on residue studies. With high statistical confidence (usually 95% in the EU and 99% in the US) the residues in almost all treated animals (usually 95%) have to be below MRL when edible produce is harvested. Here, uncertainties from both sampling and biological variability are taken into account but uncertainties of measurement associated with the analytical test methods are not systematically considered. This paper describes a simulation experiment to investigate the extent to which relevant sources of measurement uncertainty (accuracy and precision) can impact the length of WPs. A set of real residue depletion data was artificially 'contaminated' with measurement uncertainty related to permitted ranges for accuracy and precision. The results show that both accuracy and precision had a noticeable effect on the overall WP. Due consideration of sources of measurement uncertainty may improve the robustness, quality and reliability of calculations upon which regulatory decisions on consumer safety of residues are based.


Assuntos
Resíduos de Drogas , Animais , Resíduos de Drogas/análise , Reprodutibilidade dos Testes , Carne/análise
6.
J Sci Food Agric ; 102(10): 3983-3993, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34994973

RESUMO

BACKGROUND: Tea is one of the most popular drinks in the world. The growth of tea plant is inseparable from the control of pesticides on diseases and pests. Pyriproxyfen is used as a pesticide substitute to control insect pests in tea gardens, but little is known about its residue degradation. Here, we performed an integrative study of the degradation and metabolism of pyriproxyfen from the tea garden to the cup. RESULTS: The dissipation half-life of pyriproxyfen during tea growth was 2.74 days, and five metabolites PYPAC, PYPA, DPH-Pyr, 5''-OH-Pyr, and 4'-OH-Pyr were generated. The total processing factors for pyriproxyfen in green tea and black tea were 2.41-2.83 and 2.77-3.70, respectively. The residues of pyriproxyfen and its metabolites were affected by different processing steps. The total leaching rates of pyriproxyfen from green tea and black tea into their infusions were 9.8-12.3% and 5.3-13.8%, respectively. The leaching rates of the five metabolites were higher than that of pyriproxyfen and increased the intake risk. CONCLUSION: To ensure safe consumption, the recommended maximum residue limit value of pyriproxyfen in tea can be set to 5 mg kg-1 and the pre-harvest interval can be set to 5 days. © 2022 Society of Chemical Industry.


Assuntos
Camellia sinensis , Resíduos de Praguicidas , Camellia sinensis/química , Cromatografia Líquida , Resíduos de Praguicidas/análise , Piridinas , Medição de Risco , Espectrometria de Massas em Tandem , Chá/química
7.
Ecotoxicol Environ Saf ; 221: 112428, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146981

RESUMO

This study investigated the levels of highly toxic pesticides (HTPs) in 6554 vegetable and fruit samples from 31 regions of China, along with the associated risk of dietary exposure for the population between 2014 and 2017. 18 HTPs were detected in 325 (4.96%) samples, and the levels of HTPs in 103 (1.57%) samples were found to be higher than the maximum residue limits (MRLs) of China. The rate of detection of HTPs in six types of vegetables and fruits, in a decreasing order, was found to be as follows: eggplant (8.84%) >grape (5.58%) >tomato (5.43%) >cucumber (5.43%) >pear (3.12%) >apple (2.30%). The level of contamination of HTPs was found to be higher in vegetables compared with fruits. The vegetable and fruit samples with the highest percentages of HTPs exceeding MRLs were found in eggplants from Guangxi (20%) and grapes from Inner Mongolia (12.5%), respectively. Both, the average target hazard quotient (THQ) of a single highly toxic pesticide (HTP) and the average hazard index (HI) of the mixture of HTPs for adults and children from vegetables and fruits from the 31 regions were found to be less than one. Omethoate, carbofuran, ethoprophos, triazophos, and phorate were identified as the major contributors to the average HI for vegetables, and carbofuran, ethoprophos, omethoate, phorate, and phosphamidon were identified as the primary contributors to the average HI for fruits. The results of this study revealed that HTPs in vegetables and fruits did not cause any significant chronic risk of dietary exposure. The detection of HTPs exceeding MRLs in some of the samples implied that appropriate management guidelines for HTPs should be implemented to protect the health of the consumers.


Assuntos
Exposição Dietética/estatística & dados numéricos , Frutas/química , Resíduos de Praguicidas/análise , Medição de Risco , Verduras/química , Adulto , Criança , China , Contaminação de Alimentos/análise , Humanos
8.
Plant Dis ; 105(5): 1365-1372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33079026

RESUMO

Black rot, caused by Ceratocystis fimbriata, is a devastating postharvest disease of sweetpotato that recently re-emerged in 2014. Although the disease is known to develop in storage and during export to overseas markets, little is known as to how pathogen dispersal occurs. This study was designed to investigate dump tank water as a means of dispersal through four different types of water treatments: inoculum concentration (0, 5, 5 × 101, 5 × 102, and 5 × 103 spores/ml), inoculum age (0, 24, 48, 96, and 144 h), water temperature (10°C, 23°C, 35°C, and 45°C), and presence of a water sanitizer (DryTec, SaniDate, FruitGard, and Selectrocide). Wounded and nonwounded sweetpotato storage roots were soaked in each water treatment for 20 min, stored at 29°C for a 14-day period, and rated for disease incidence every other day. Disease was observed in sweetpotato storage roots in all water treatments tested, except in the negative controls. Disease incidence decreased with both inoculum concentration and inoculum age, yet values of 16.26% and up to 50% were observed for roots exposed to 5 spores/ml and 144-h water treatments, respectively. Sanitizer products that contained a form of chlorine as the active ingredient significantly reduced disease incidence in storage roots when compared with control roots and roots exposed to a hydrogen-peroxide based product. Finally, no significant differences in final incidence were detected in wounded sweetpotato storage roots exposed to water treatments of any temperature, but a significant reduction in disease progression was observed in the 45°C treatment. These findings indicate that if packing line dump tanks are improperly managed, they can aid C. fimbriata dispersal through the build-up of inoculum as infected roots are unknowingly washed after storage. Chlorine-based sanitizers can reduce infection when applied after root washing and not in the presence of high organic matter typically found in dump tanks.


Assuntos
Ipomoea batatas , Ceratocystis , Temperatura , Água
9.
J Sci Food Agric ; 101(1): 194-204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623719

RESUMO

BACKGROUND: Picoxystrobin is a new osmotic and systemic broad-spectrum methoxyacrylate fungicide with a good control effect on tea anthracnose, so it has been proposed to spray picoxystrobin before the occurrence and onset of tea anthracnose during tea bud growth in order to protect them. However, there are few reports about the residue analysis method, field dissipation, terminal residue and risk assessment of picoxystrobin in tea. And there is no scientific and reasonable maximum residue limit of picoxystrobin in green tea. RESULTS: A rapid and sensitive analysis method for picoxystrobin residue in fresh tea leaf, green tea, tea infusion and soil was established by UPLC-MS/MS. The spiked recoveries of picoxystrobin ranged from 73.1% to 111.0%, with relative standard deviations from 1.8% to 9.2%. The limits of quantitation were 20 µg kg-1 in green tea, 8 µg kg-1 in fresh tea leaves and soil and 0.16 µg kg-1 in tea infusion. The dissipation half-lives of picoxystrobin in fresh tea leaf and soil were 2.7-6.8 and 2.5-14.4 days, respectively. And the maximum residue of picoxystrobin in green tea was 15.28 mg kg-1 with PHI at 10 days for terminal test. The total leaching rate of picoxystrobin during green tea brewing was lower than 35.8%. CONCLUSIONS: According to safety evaluation, the RQc and RQa values of picoxystrobin in tea after 5 to 14 days for the last application were significantly lower than 1. Therefore, the maximum residue limit value of picoxystrobin in tea that we suggest to set at 20 mg kg-1 can ensure the safety of tea for human drinking. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Fungicidas Industriais/análise , Resíduos de Praguicidas/química , Estrobilurinas/química , Camellia sinensis/química , Cromatografia Líquida de Alta Pressão , Qualidade de Produtos para o Consumidor , Culinária , Contaminação de Alimentos/análise , Meia-Vida , Humanos , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
10.
Regul Toxicol Pharmacol ; 118: 104806, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058940

RESUMO

The use of veterinary drugs in food-producing animals may lead to residues in animal-derived foodstuffs, potentially posing a risk to human safety. While the process of veterinary drug residue risk assessment continues to evolve as new data emerges, a recurring challenge is when sub-optimal or incomplete data are provided with the expectation of supporting a robust risk assessment. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) is comprised of international experts who routinely deal with such data challenges when performing veterinary drug residue evaluations. Recent developments in veterinary drug residue risk assessment are described, including specific consequences of sub-optimal data during the risk assessment process. When feasible, practical solutions to such challenges are also highlighted. Case examples from recent JECFA veterinary drug evaluations are provided to clearly quantify and illustrate the concepts described. The information provided is intended to facilitate the generation of improved quality data, enabling more timely and robust veterinary drug residue risk assessments.


Assuntos
Resíduos de Drogas/análise , Cadeia Alimentar , Contaminação de Alimentos/análise , Drogas Veterinárias/análise , Animais , Qualidade de Produtos para o Consumidor , Resíduos de Drogas/efeitos adversos , Humanos , Medição de Risco , Testes de Toxicidade , Drogas Veterinárias/efeitos adversos
11.
Bull Environ Contam Toxicol ; 104(2): 293-300, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832743

RESUMO

The dissipation of pendimethalin applied in direct seeded rice (DSR) and transplanted rice (TPR) field at 1.0 and 2.0 kg a.i. ha-1 followed biphasic first order kinetics (R2 > 0.91) and was comparatively faster under flooded TPR than DSR. The half-life (DT50) of pendimethalin in the soil ranged from 2.22 to 2.80 days in the initial phase and 23.51 to 24.66 days in the final phase in TPR for both application rates. However in DSR, DT50 varied from 3.67 to 4.35 days in the initial phase and 34.19 to 34.99 days in the final phase. Residues of pendimethalin in soil samples analyzed by HPLC and GC-MS/MS were below the detection limit (< 0.003 µg g-1) for both the application rates in DSR and TPR whereas 0.003-0.009 µg g-1 and 0.003-0.008 µg g-1 residues of pendimethalin were found in rice grain and straw samples, respectively.


Assuntos
Compostos de Anilina/análise , Herbicidas/análise , Oryza/química , Poluentes do Solo/análise , Agricultura/métodos , Meia-Vida , Cinética , Sementes/química
12.
Biomed Chromatogr ; 32(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134675

RESUMO

The category of 'leafy vegetables' comprises a wide range of plants, including cabbage, lettuce, leeks, spinach, Swiss chard and kale, and it forms a significant component of the human diet. Typically, leafy vegetables are low in calories and fat, are great sources of vitamins, protein, dietary fibre and minerals (including iron, calcium, and nitrates), and are rich in phytochemicals. To counter the impact of pests on vegetables, a broad variety of pesticides are used. Because of their large surface areas, leafy vegetables are expected to have high residual pesticide levels. As such, a sound analytical approach is needed to detect and quantify residue levels that are equal to or lower than the maximum residue limits, thus rendering the products safe for consumption. Overall, leafy vegetables consumed raw (after a tap water wash only), boiled or steamed contribute 2% of total vegetable consumption globally, and they might have a comparatively greater influence on health than cereal ingestion. Consequently, in this review paper, we highlight the importance of leafy vegetables, the pesticides that are commonly used on them and various analytical techniques, including sample preparation, extraction, clean-up and final detection. The effects on dissipation patterns, pre-harvest residue limits and safety/risks imposed by various pesticides are also reviewed and discussed. In conclusion, environmentally friendly extraction methods coupled with high-throughput techniques with greater reproducibility and lower uncertainty are needed for quantifying residues in leafy vegetables at very low concentrations. Commercial and household food preparation, such as washing, peeling, blanching and cooking are effective in removing most of the pesticide residues that are loosely attached on vegetables.


Assuntos
Resíduos de Praguicidas/análise , Folhas de Planta/química , Verduras/química , Fracionamento Químico , Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos , Humanos , Espectrometria de Massas/métodos , Medição de Risco
13.
J Environ Manage ; 219: 153-167, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29747101

RESUMO

To evaluate whether pesticide maximum residue limits (MRLs) can protect public health, a deterministic dietary risk assessment of maximum pesticide legal exposure was conducted to convert global MRLs to theoretical maximum dose intake (TMDI) values by estimating the average food intake rate and human body weight for each country. A total of 114 nations (58% of the total nations in the world) and two international organizations, including the European Union (EU) and Codex (WHO) have regulated at least one of the most currently used pesticides in at least one of the most consumed agricultural commodities. In this study, 14 of the most commonly used pesticides and 12 of the most commonly consumed agricultural commodities were identified and selected for analysis. A health risk analysis indicated that nearly 30% of the computed pesticide TMDI values were greater than the acceptable daily intake (ADI) values; however, many nations lack common pesticide MRLs in many commonly consumed foods and other human exposure pathways, such as soil, water, and air were not considered. Normality tests of the TMDI values set indicated that all distributions had a right skewness due to large TMDI clusters at the low end of the distribution, which were caused by some strict pesticide MRLs regulated by the EU (normally a default MRL of 0.01 mg/kg when essential data are missing). The Box-Cox transformation and optimal lambda (λ) were applied to these TMDI distributions, and normality tests of the transformed data set indicated that the power transformed TMDI values of at least eight pesticides presented a normal distribution. It was concluded that unifying strict pesticide MRLs by nations worldwide could significantly skew the distribution of TMDI values to the right, lower the legal exposure to pesticide, and effectively control human health risks.


Assuntos
Contaminação de Alimentos , Resíduos de Praguicidas , Risco , Alimentos , Humanos , Praguicidas
14.
J Environ Sci Health B ; 53(6): 352-365, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584573

RESUMO

Proposals to update the methodology for the international estimated short-term intake (IESTI) equations were made during an international workshop held in Geneva in 2015. Changes to several parameters of the current four IESTI equations (cases 1, 2a, 2b, and 3) were proposed. In this study, the overall impact of these proposed changes on estimates of short-term exposure was studied using the large portion data available in the European Food Safety Authority PRIMo model and the residue data submitted in the framework of the European Maximum Residue Levels (MRL) review under Article 12 of Regulation (EC) No 396/2005. Evaluation of consumer exposure using the current and proposed equations resulted in substantial differences in the exposure estimates; however, there were no significant changes regarding the number of accepted MRLs. For the different IESTI cases, the median ratio of the new versus the current equation is 1.1 for case 1, 1.4 for case 2a, 0.75 for case 2b, and 1 for case 3. The impact, expressed as a shift in the IESTI distribution profile, indicated that the 95th percentile IESTI shifted from 50% of the acute reference dose (ARfD) with the current equations to 65% of the ARfD with the proposed equations. This IESTI increase resulted in the loss of 1.2% of the MRLs (37 out of 3110) tested within this study. At the same time, the proposed equations would have allowed 0.4% of the MRLs (14 out of 3110) that were rejected with the current equations to be accepted. The commodity groups that were most impacted by these modifications are solanacea (e.g., potato, eggplant), lettuces, pulses (dry), leafy brassica (e.g., kale, Chinese cabbage), and pome fruits. The active substances that were most affected were fluazifop-p-butyl, deltamethrin, and lambda-cyhalothrin.


Assuntos
Exposição Dietética/análise , Resíduos de Praguicidas/toxicidade , Medição de Risco/métodos , Adulto , Brassica/química , Criança , União Europeia , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Humanos , Nitrilas/análise , Nitrilas/toxicidade , Resíduos de Praguicidas/análise , Piretrinas/análise , Piretrinas/toxicidade , Medição de Risco/normas , Testes de Toxicidade Aguda
15.
J Environ Sci Health B ; 53(6): 343-351, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584569

RESUMO

In the framework of setting Maximum Residue Limits (MRLs) for pesticides, both chronic and acute health risks to consumers arising from the long-term and short-term dietary exposure to pesticide residues have to be assessed. The current internationally harmonized approach for assessing the acute dietary exposure is based on deterministic methods for calculating the IESTI (International Estimate of Short-Term Intake). Recently, it became apparent that the IESTI approach needs a revision in the light of new scientific and political aspects. The main reasons that require this review were the lack of an international harmonization of the methodology which implies trade barriers as well as difficulties in risk communication concerning the public trust in regulatory systems. The most recent milestone in the scientific debate on a possible revision of the IESTI equation was an international scientific workshop held in Geneva in September 2015. The main objectives of this meeting were the re-evaluation, and where possible, the international harmonization of the input parameters for the IESTI equations as well as the equations themselves. The main recommendations from the workshop were (i) to replace the highest residue and supervised trials median residue with the maximum residue limit (MRL), (ii) to use a standard variability factor of three, (iii) to derive the P97.5 large portion value from the distribution of consumption values of dietary surveys expressed as kg food/kg bw/d, and (iv) to remove the commodity unit weight from the equations. In addition, the application of conversion factors and processing factors was addressed. On the initiative of the (World Health Organization) WHO Collaborating Centre on Chemical Food Safety at the National Institute for Public Health and the Environment (RIVM), the Netherlands, an international working group with members from the French Agency for Food, Environmental and Occupational Health and Safety, France (ANSES), Australian Pesticides and Veterinary Medicines Authority, Australia (APVMA), German Federal Institute for Risk Assessment, Germany (BfR), Chemical Regulation Division, the United Kingdom (CRD), European Food Safety Authority (EFSA), and RIVM, the Netherlands was formed after the IESTI workshop to conduct a comprehensive impact assessment of the proposed changes of the IESTI equations.


Assuntos
Exposição Dietética/análise , Praguicidas/toxicidade , Medição de Risco/métodos , Austrália , Exposição Dietética/efeitos adversos , União Europeia , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , França , Alemanha , Humanos , Resíduos de Praguicidas/análise
16.
J Environ Sci Health B ; 53(6): 380-393, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584574

RESUMO

In 2015 a scientific workshop was held in Geneva, where updating the International Estimate of Short-Term Intake (IESTI) equations was suggested. This paper studies the effects of the proposed changes in residue inputs, large portions, variability factors and unit weights on the overall short-term dietary exposure estimate. Depending on the IESTI case equation, a median increase in estimated overall exposure by a factor of 1.0-6.8 was observed when the current IESTI equations are replaced by the proposed IESTI equations. The highest increase in the estimated exposure arises from the replacement of the median residue (STMR) by the maximum residue limit (MRL) for bulked and blended commodities (case 3 equations). The change in large portion parameter does not have a significant impact on the estimated exposure. The use of large portions derived from the general population covering all age groups and bodyweights should be avoided when large portions are not expressed on an individual bodyweight basis. Replacement of the highest residue (HR) by the MRL and removal of the unit weight each increase the estimated exposure for small-, medium- and large-sized commodities (case 1, case 2a or case 2b equations). However, within the EU framework lowering of the variability factor from 7 or 5 to 3 counterbalances the effect of changes in other parameters, resulting in an estimated overall exposure change for the EU situation of a factor of 0.87-1.7 and 0.6-1.4 for IESTI case 2a and case 2b equations, respectively.


Assuntos
Exposição Dietética/análise , Contaminação de Alimentos/análise , Praguicidas/toxicidade , Medição de Risco/métodos , Animais , Peso Corporal , Exposição Dietética/normas , União Europeia , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Medição de Risco/normas
17.
J Environ Sci Health B ; 53(6): 366-379, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584575

RESUMO

In 2015 a scientific workshop was held in Geneva, where updating the four equations for estimating the short-term dietary exposure (International Estimated Short Term Intake, IESTI) to pesticides was suggested. The impact of these proposed changes on the exposure was studied by using residue data and large portion consumption data from Codex and Australia. For the Codex data, the exposure increased by a median factor of 2.5 per commodity when changing to the proposed IESTI equations. The increase in exposure was highest for bulked and blended food commodities (case 3 equations), followed by medium-sized food commodities (case 2a equations) and small- and large-sized food commodities (case 1 and case 2b equations). For the Australian data, out of 184 maximum residue limit (MRL) large portion combinations showing acute exposures below the acute reference dose (ARfD) with the current IESTI equations, 23 exceeded the ARfD with the proposed IESTI equations (12%). The percentage exceeding the ARfD was higher for the Australian MRL large portion combinations (12% of 184) than for those of Codex (1.3% of 8,366). However, the percentage MRL loss in the Australian dataset may not be representative of all pesticide MRLs since it concerns six pesticides only, specifically selected to elucidate the potential effects of the use of the proposed IESTI equations. For the Codex data, the increase in exposure using the proposed equations resulted in a small increased loss of 2.6% of the 1,110 MRLs estimated by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR): 1.4% of the MRLs were already not acceptable with the current equations, 4.0% of the MRLs were not acceptable with the newly proposed equations. Our study revealed that case 3 commodities may be impacted more by the proposed changes than other commodities. This substantiates one of the conclusions of the Geneva workshop to gather information on bulking and blending practices in order to refine MRL setting and dietary risk assessment for case 3 commodities where possible.


Assuntos
Exposição Dietética/análise , Praguicidas/toxicidade , Medição de Risco/métodos , Austrália , Dieta , Contaminação de Alimentos/análise , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Medição de Risco/normas
18.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2333-2338, 2018 Jun.
Artigo em Zh | MEDLINE | ID: mdl-29945387

RESUMO

This paper reports the residual status of forbidden and restricted pesticides of organophosphorus in Loincerae Japonicae Flos to provide reference for the risk control and the formulation of maximum residue limits of the flower. A method for the determination of residues of 23 forbidden and restricted pesticides of organophosphorus was established, and 64 collected samples were tested. Then a risk assessment based on the maximum residue limit was carried out. Results showed that the detection rate of samples was 58%. 6 of 23 pesticides were detected and the ratio was chlorpyrifos 41%, omethoate 23%, triazophos 11%, isofenphos-methyl 6.3%, methamidophos 1.6%, isocarbophos 1.6%, respectively. And the median of pesticide residues in the positive samples was chlorpyrifos 0.037 mg·kg⁻¹, omethoate 0.043 mg·kg⁻¹, triazophos 0.030 mg·kg⁻¹, isofenphos-methyl 0.18 mg·kg⁻¹, methamidophos 0.041 mg·kg⁻¹, isocarbophos 0.041 mg·kg⁻¹, respectively. In the samples with pesticide residues, the residue amount of methamidophos and isocarbophos was lower than the theoretical maximum residue limit, and the residue amount of chlorpyrifos, isofenphos-methyl, triazophos were higher than it individually, while, all the residue amount of omethoate was higher than it. According to the assessment result of theoretical maximum residue limit, it is suggested that relevant departments should accelerate the formulation of the maximum residue limit standard, and strengthen the supervision of the use of forbidden and restricted pesticides of organophosphorus in Loincerae Japonicae Flos.


Assuntos
Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Flores/química , Lonicera/química , Resíduos de Praguicidas/análise , Praguicidas , Medição de Risco
19.
Regul Toxicol Pharmacol ; 71(3): 590-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25707857

RESUMO

The use of water medications is a common practice in the US swine industry to treat and prevent infections in swine herds with minimal labor and without risk of needle breakage. There are concerns that FDA-approved withdrawal times (WDT) may be inadequate for several water medications when exporting pork products to countries where MRLs (maximum residue limits) are lower than US tolerance levels. In this study, withdrawal intervals (WDI) were estimated for pigs when dosed with tetracycline and sulfamethazine in water. The WDI were calculated using the FDA tolerance method (TLM) and a population-based pharmacokinetic method (PopPK). The estimated WDIs (14-16 days using TLM) were similar to the approved WDT of 15 days for sulfamethazine. However, the PopPK method extended WDIs for both sulfamethazine (19-20 days) and tetracycline (12 days) compared to the currently approved WDTs in the U.S. This study also identified potential differences in WDI between weanling and finisher pigs. In conclusion, the TLM may not always provide adequate WDT for foreign export markets especially when MRLs differ from tolerance levels approved for US markets. However, PopPK methods can provide conservative WDIs in situations with considerable variability in medication exposure such as with administration in water.


Assuntos
Antibacterianos/farmacocinética , Resíduos de Drogas/farmacocinética , Contaminação de Alimentos/análise , Abastecimento de Alimentos , Carne Vermelha/análise , Sulfametazina/farmacocinética , Sus scrofa/metabolismo , Tetraciclina/farmacocinética , Administração Oral , Fatores Etários , Criação de Animais Domésticos , Animais , Antibacterianos/administração & dosagem , Qualidade de Produtos para o Consumidor , Esquema de Medicação , Sulfametazina/administração & dosagem , Tetraciclina/administração & dosagem , Distribuição Tecidual , Abastecimento de Água
20.
J Chromatogr A ; 1724: 464901, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669944

RESUMO

Antibacterial medications are receiving the most attention due to hypersensitivity reactions and the emergence of bacterial mutants resistant to antibiotics. Treating Animals with uncontrolled amounts of antibiotics will extend beyond their lives and affect humans. This study aims to determine the concentration of the residues of sulfadimidine, sulfaquinoxaline, diaveridine, and vitamin K3 in the tissues of poultry (muscles and liver) after treatment with the combined veterinary formulation. A UPLC-MS-MS method was developed using Poroshell 120 ECC18 and a mobile phase composed of acetonitrile and distilled water, containing 0.1 % formic acid, in the ratio of (85:15 v/v) at a flow rate of 0.6 mL/min. Sample extraction solvent was optimized using response surface methodology (RSM) to be acetonitrile: methanol in the ratio (49.8: 50.2 v/v), and the method was validated according to the FDA bioanalytical method validation protocol over the range (50-1000 µg/Kg) for sulfaquinoxaline and (50-750 µg/Kg) for the other 3 drugs. The greenness of the sample preparation and analytical method was assessed by applying Analytical Eco-scale (AES) and AGREE coupled with AGREEprep. The Competence of the study was evaluated via the EVG framework known as Efficiency, validation, and greenness, to achieve a balance point represented by a radar chart. The method was applied to decide the time required for poultry products to be safe for human use after administration of the studied drugs. It was found that, after the administration of the last dose, minimally 7 days are required till the levels of the drugs drop to the maximum residue limit determined by the FDA/WHO in animal tissues.


Assuntos
Galinhas , Resíduos de Drogas , Drogas Veterinárias , Animais , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/análise , Espectrometria de Massa com Cromatografia Líquida/métodos , Fígado/química , Músculos/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA