Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 667: 25-33, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37207561

RESUMO

OBJECTIVES: Changes of macrophage in the local immune microenvironment of periodontitis cause alveolar bone resorption. This study aims to investigate the effect of a new drug delivery method of aspirin on the immune microenvironment of periodontitis to promote alveolar bone repair, and to explore mechanism of aspirin's effect on macrophage. METHODS: We isolated extracellular vesicles (EVs) from periodontal stem cells (PDLSCs) and loaded with aspirin by sonication, and then evaluated the treatment efficacy of aspirin-loaded vesicles (EVs-ASP) in periodontitis model in mice. In vitro, we explored the role of EVs-ASP in the regulation of LPS-induced macrophages. The underlying mechanism by which EVs-ASP regulates phenotypic remodeling of macrophages in periodontitis was further investigated. RESULTS: EVs-ASP inhibited the inflammatory environment of LPS-induced macrophage, and promoted anti-inflammatory macrophages formation both in vivo and in vitro, and reduced bone loss in periodontitis models. Moreover, EVs-ASP enhanced oxidative phosphorylation and suppressed glycolysis in macrophages. CONCLUSIONS: Consequently, EVs-ASP improves the periodontal immune microenvironment by enhancing oxidative phosphorylation (OXPHOS) in macrophages, resulting in a certain degree of regeneration of alveolar bone height. Our study provides a new potential strategy for bone repair in periodontitis therapy.


Assuntos
Vesículas Extracelulares , Periodontite , Camundongos , Animais , Aspirina/farmacologia , Aspirina/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Fenótipo
2.
Cancer Cell Int ; 23(1): 83, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120513

RESUMO

BACKGROUND: Reprogrammed metabolic network is a key hallmark of cancer. Profiling cancer metabolic alterations with spatial signatures not only provides clues for understanding cancer biochemical heterogeneity, but also helps to decipher the possible roles of metabolic reprogramming in cancer development. METHODS: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to characterize the expressions of fatty acids in breast cancer tissues. Specific immunofluorescence staining was further carried out to investigate the expressions of fatty acid synthesis-related enzymes. RESULTS: The distributions of 23 fatty acids in breast cancer tissues have been mapped, and the levels of most fatty acids in cancer tissues are significantly higher than those in adjacent normal tissues. Two metabolic enzymes, fatty acid synthase (FASN) and acetyl CoA carboxylase (ACC), which being involved in the de novo synthesis of fatty acid were found to be up-regulated in breast cancer. Targeting the up-regulation of FASN and ACC is an effective approach to limiting the growth, proliferation, and metastasis of breast cancer cells. CONCLUSIONS: These spatially resolved findings enhance our understanding of cancer metabolic reprogramming and give an insight into the exploration of metabolic vulnerabilities for better cancer treatment.

3.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580952

RESUMO

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Assuntos
Neoplasias Hepáticas , Sirtuína 2 , Humanos , Sirtuína 2/genética , Sirtuína 2/metabolismo , Metabolismo dos Lipídeos , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Proliferação de Células , Lipídeos , Acetilação , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mitocondriais/metabolismo
4.
Acta Pharmacol Sin ; 43(6): 1337-1348, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34561553

RESUMO

A number of emerging studies in field of immune metabolism have indicated that cellular metabolic reprograming serves as a major administrator in maintaining the viability and functions of both tumor cells and immune cells. As one of the most important immunosuppressive cells in tumor stroma, myeloid-derived suppressor cells (MDSCs) dynamically orchestrate their metabolic pathways in response to the complicated tumor microenvironment (TME), a process that consequently limits the therapeutic effectiveness of anti-cancer treatment modalities. In this context, the metabolic vulnerabilities of MDSCs could be exploited as a novel immune metabolic checkpoint upon which to intervene for promoting the efficacy of immunotherapy. Here, we have discussed about recent studies highlighting the important roles of the metabolic reprograming and the core molecular pathways involved in tumor-infiltrating MDSCs. In addition, we have also summarized the state-of-the-art strategies that are currently being employed to target MDSC metabolism and improve the efficacy of antineoplastic immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Imunoterapia , Metabolismo dos Lipídeos , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral
5.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298981

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors expressed in the skin. Three PPAR isotypes, α (NRC1C1), ß or δ (NRC1C2) and γ (NRC1C3), have been identified. After activation through ligand binding, PPARs heterodimerize with the 9-cis-retinoic acid receptor (RXR), another nuclear hormone receptor, to bind to specific PPAR-responsive elements in regulatory regions of target genes mainly involved in organogenesis, cell proliferation, cell differentiation, inflammation and metabolism of lipids or carbohydrates. Endogenous PPAR ligands are fatty acids and fatty acid metabolites. In past years, much emphasis has been given to PPARα and γ in skin diseases. PPARß/δ is the least studied PPAR family member in the skin despite its key role in several important pathways regulating inflammation, keratinocyte proliferation and differentiation, metabolism and the oxidative stress response. This review focuses on the role of PPARß/δ in keratinocytes and its involvement in psoriasis and atopic dermatitis. Moreover, the relevance of targeting PPARß/δ to alleviate skin inflammation is discussed.


Assuntos
Dermatite Atópica/metabolismo , Queratinócitos/metabolismo , PPAR delta/fisiologia , Psoríase/metabolismo , Pele/metabolismo , Anaerobiose , Animais , Dimerização , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Humanos , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Fosforilação , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Proteólise , Receptores X de Retinoides/metabolismo , Pele/patologia
6.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008815

RESUMO

Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Animais , Hipóxia Celular , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Transporte Proteico , Frações Subcelulares/metabolismo
7.
Gut ; 67(8): 1493-1504, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29437870

RESUMO

OBJECTIVE: Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. DESIGN: Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. RESULTS: The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid ß-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. CONCLUSION: In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/etiologia , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina/análogos & derivados , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/complicações , Adulto , Idoso , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carnitina/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Obesidade/patologia
8.
Mol Cancer ; 17(1): 134, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176928

RESUMO

In contrast to normal cells, which use the aerobic oxidation of glucose as their main energy production method, cancer cells prefer to use anaerobic glycolysis to maintain their growth and survival, even under normoxic conditions. Such tumor cell metabolic reprogramming is regulated by factors such as hypoxia and the tumor microenvironment. In addition, dysregulation of certain signaling pathways also contributes to cancer metabolic reprogramming. Among them, the Hippo signaling pathway is a highly conserved tumor suppressor pathway. The core oncosuppressive kinase cascade of Hippo pathway inhibits the nuclear transcriptional co-activators YAP and TAZ, which are the downstream effectors of Hippo pathway and oncogenic factors in many solid cancers. YAP/TAZ function as key nodes of multiple signaling pathways and play multiple regulatory roles in cancer cells. However, their roles in cancer metabolic reprograming are less clear. In the present review, we examine progress in research into the regulatory mechanisms of YAP/TAZ on glucose metabolism, fatty acid metabolism, mevalonate metabolism, and glutamine metabolism in cancer cells. Determining the roles of YAP/TAZ in tumor energy metabolism, particularly in relation to the tumor microenvironment, will provide new strategies and targets for the selective therapy of metabolism-related cancers.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Hipóxia Celular , Metabolismo Energético , Gluconeogênese , Glicólise , Humanos , Transdução de Sinais , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Microambiente Tumoral
9.
Crit Rev Biochem Mol Biol ; 50(3): 242-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898275

RESUMO

Cancer cells use glucose and glutamine to facilitate cell growth and proliferation, a process coined "metabolic reprograming" - an emerging hallmark of cancer. Inside the cell, these nutrients synergize to produce metabolic building blocks, such as nucleic acids, lipids and proteins, as well as energy (ATP), glutathione and reducing equivalents (NADPH), required for survival, growth and proliferation. Intense research aimed at understanding the underlying cause of the metabolic rewiring has revealed that established oncogenes and tumor suppressors involved in signaling alter cellular metabolism to contribute to the transition from a normal quiescent cell to a rapidly proliferating cancer cell. Likewise, bona fide metabolic sensors are emerging as regulators of tumorigenesis. This review will focus on one such family of sensors, sirtuins, which utilize NAD(+) as a cofactor to catalyze deacetylation, deacylation and ADP-ribosylation of their protein substrates. In this review, we will enumerate how cancer cell metabolism is different from a normal quiescent cell and highlight the emerging role of mitochondrial sirtuin signaling in the regulation of tumor metabolism.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Sirtuínas/metabolismo , Animais , Glucose/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo
10.
Technol Cancer Res Treat ; 22: 15330338231190545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605558

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Pulmão/patologia , Autofagia
11.
Technol Cancer Res Treat ; 22: 15330338231190737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559469

RESUMO

At present, chemotherapy is the most effective strategy for treating triple-negative breast cancer (TNBC), but its efficacy was limited by the development of chemo-resistance. The exact mechanism of chemoresistance still remains unclear. This study aims to examine whether 6-phosphogluconate dehydrogenase (6PGD), a key enzyme in the oxidative pentose phosphate pathway (PPP), could promote the resistance of TNBC cells to epirubicin. A TNBC epirubicin-resistant cell line was developed by increasing concentration and the effectiveness was tested. The expression and knockdown efficiency of 6PGD were further validated by performing quantitative real-time PCR (qPCR) and Western blot. The effects of 6PGD on parental and drug-resistant TNBC cell lines were verified based on proliferation and apoptosis experiments. Finally, nicotinamide adenine dinucleotide phosphate (NADPH) and lactate quantitative experiments were performed to examine the mechanism of 6PGD in promoting drug resistance. Epirubicin-resistant cancer cells exhibited a higher level of 6PGD in contrast to epirubicin-sensitive cells. In addition, 6PGD inhibited by genetic and pharmacological approaches significantly suppressed the growth and survival of both epirubicin-sensitive and epirubicin-resisteant TNBC cells. It should be noted that 6PGD inhibition sensitized epirubicin-resistant TNBC cells to epirubicin treatment. Moreover, it was also found that the levels of NADPH and lactate increased in epirubicin-resistant TNBC cells but decreased in response to 6PGD inhibition. The present results indicated that 6PGD inhibition disrupted metabolic reprogramming in epirubicin-resistant TNBC cells. Our work demonstrated that 6PGD inhibition reversed the resistance of TNBC cells to epirubicin, providing an alternative therapeutic choice to tackle the challenge of epirubicin resistance in TNBC treatment.


Assuntos
Fosfogluconato Desidrogenase , Neoplasias de Mama Triplo Negativas , Humanos , Epirubicina/farmacologia , Linhagem Celular Tumoral , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , NADP/metabolismo , NADP/farmacologia , Lactatos/farmacologia , Proliferação de Células
12.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523968

RESUMO

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/metabolismo , Genes Supressores de Tumor , Oncogenes , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética
13.
Biochim Biophys Acta Gen Subj ; 1867(3): 130301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572257

RESUMO

Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicólise , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Metabolismo Energético , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Res Sq ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790365

RESUMO

TCF1high progenitor CD8+ T cells mediate the efficacy of PD-1 blockade, however the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high central memory-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites, and increased PPP cycling as determined by 1,2 13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells towards a TCF1high population, generated a unique transcriptional landscape, enhanced tumor control in mice in combination with PD-1 blockade, and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state amenable to checkpoint blockade.

15.
J Nutr Biochem ; 113: 109249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496060

RESUMO

Low-grade chronic inflammation originating from the adipose tissue and imbalance of lipid metabolism in the liver are the main drivers of the development of obesity and its related metabolic disorders. In this work, we found that garlic-derived exosomes (GDE) supplementation improved insulin resistance, altered the levels of inflammatory cytokines in serum and epididymal white adipose tissue (eWAT) by decreasing the accumulation of macrophages in HFD-fed mice. Meanwhile, we also observed that GDE regulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), one of the critical glycolytic enzymes, to shape the metabolic reprograming of macrophage induced by lipopolysaccharide (LPS) and mitigate the inflammatory response in adipocytes via macrophage-adipocyte cross-talk. Data from small RNA sequencing, bioinformatical analysis and the gene over-expression revealed that miR-396e, one of the most abundant miRNAs of GDE, played a critical role in promoting the metabolic reprogramming of macrophage by directly targeting PFKFB3. The findings of this study not only provide an in-depth understanding of GDE protecting against inflammation in obesity but supply evidence to study the molecular mechanisms associated with the interspecies communication.


Assuntos
Exossomos , Alho , Resistência à Insulina , MicroRNAs , Camundongos , Animais , Exossomos/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
16.
Front Mol Biosci ; 10: 1126055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876046

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.

17.
Adv Protein Chem Struct Biol ; 136: 35-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437984

RESUMO

Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.


Assuntos
Senescência Celular , Mitocôndrias , Apoptose , Ciclo Celular
18.
J Agric Food Chem ; 70(9): 2898-2910, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213152

RESUMO

Reprograming of energy metabolism is a major hallmark of cancer, but its effective intervention is still a challenging task due to metabolic heterogeneity and plasticity of cancer cells. Herein, we report a general redox-based strategy for meeting the challenge. The strategy was exemplified by a dietary curcumin analogue (MitoCur-1) that was designed to target mitochondria (MitoCur-1). By virtue of its electrophilic and mitochondrial-targeting properties, MitoCur-1 generated reactive oxygen species (ROS) more effectively and selectively in HepG2 cells than in L02 cells via the inhibition of mitochondrial antioxidative thioredoxin reductase 2 (TrxR2). The ROS generation preferentially mediated the energy crisis of HepG2 cells in a dual-inhibition fashion against both mitochondrial and glycolytic metabolisms, which could hit the metabolic plasticity of HepG2 cells. The ROS-dependent energy crisis also allowed its preferential killing of HepG2 cells (IC50 = 1.4 µM) over L02 cells (IC50 = 9.1 µM), via induction of cell-cycle arrest, apoptosis and autophagic death, and its high antitumor efficacy in vivo, in nude mice bearing HepG2 tumors (15 mg/kg). These results highlight that inhibiting mitochondrial TrxR2 to produce ROS by electrophiles is a promising redox-based strategy for the effective intervention of cancer cell energy metabolic reprograming.


Assuntos
Curcumina , Neoplasias , Animais , Apoptose , Curcumina/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
19.
Front Oncol ; 12: 971479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147929

RESUMO

Ovarian cancer is an aggressive tumor that remains to be the most lethal gynecological malignancy in women. Metabolic adaptation is an emerging hallmark of tumors. It is important to exploit metabolic vulnerabilities of tumors as promising strategies to develop more effective anti-tumor regimens. Tumor cells reprogram the metabolic pathways to meet the bioenergetic, biosynthetic, and mitigate oxidative stress required for tumor cell proliferation and survival. Oxidative phosphorylation has been found to be altered in ovarian cancer, and oxidative phosphorylation is proposed as a therapeutic target for management of ovarian cancer. Herein, we initially introduced the overview of oxidative phosphorylation in cancer. Furthermore, we discussed the role of oxidative phosphorylation and chemotherapeutic resistance of ovarian cancer. The role of oxidative phosphorylation in other components of tumor microenvironment of ovarian cancer has also been discussed.

20.
Front Bioeng Biotechnol ; 10: 943906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992338

RESUMO

Cancer cells reprogram their metabolism to meet their growing demand for bioenergy and biosynthesis. The metabolic profile of cancer cells usually includes dysregulation of main nutritional metabolic pathways and the production of metabolites, which leads to a tumor microenvironment (TME) having the characteristics of acidity, hypoxic, and/or nutrient depletion. Therapies targeting metabolism have become an active and revolutionary research topic for anti-cancer drug development. The differential metabolic vulnerabilities between tumor cells and other cells within TME provide nanotechnology a therapeutic window of anti-cancer. In this review, we present the metabolic characteristics of intrinsic cancer cells and TME and summarize representative strategies of nanoparticles in metabolism-regulating anti-cancer therapy. Then, we put forward the challenges and opportunities of using nanoparticles in this emerging field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA