Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 1014, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325209

RESUMO

BACKGROUND: The aim of the study is to investigate the relationship between Methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) polymorphisms, 5 serum related molecular levels and the risk of adverse pregnancies in different genders. METHODS: Patients aged from 22 to 38 with a history of adverse pregnancy treated in our genetic eugenics clinic of Henan Provincial People's Hospital are selected. The controls aged from 20 to 34 undergoing eugenics examinations in our genetic eugenics clinic that had no history of adverse pregnancy and at least one healthy child are selected. Sanger sequencing and Chemiluminescence Microparticle Immuno Assay (CMIA) are used for detecting the mutations of MTHFR and MTRR and the 5 serum molecular serum levels. RESULTS: In the female group, MTHFR 677 C > T is associated with Recurrent spontaneous abortion (RSA) (P = 0.0017), Chromosomal abnormality (CA) (P = 0.0053), Cleft lip and palate (CLP) (P = 0.0326) and Brain dysplasia (BD) (P = 0.0072); MTHFR 1298 A > C is associated with Infertility (P = 0.0026) and BD (P = 0.0382); MTRR 66 A > G is associated with CLP (P = 0.0131). In the male group, MTHFR 677 C > T is associated with RSA (P = 0.0003), Infertility (P = 0.0013), CA (P = 0.0027) and BD (P = 0.0293). In the female group, the genotype of MTHFR 677 C > T is associated with RSA (P = 0.0017), CA (P = 0.0014) and BD (P = 0.0021); MTHFR 1298 A > C is associated with Infertility (P = 0.0081) and MTRR 66 A > G is associated with Infertility (P = 0.0309). In the male group, the genotype of MTHFR 677 C > T is associated with RSA (P = 0.0008), Infertility (P = 0.0096) and CA (P = 0.0165) and MTRR 66 A > G is associated with Infertility (P = 0.0158) and congenital heart disease (CHD) (P = 0.0218). In the male group, there is statistically significant difference of the serum Homocysteine (Hcy) levels (P < 0.0001) between adverse pregnancy group and controls. In the female group, there is statistically significant difference of the serum vitamin D levels (P = 0.0015) between adverse pregnancy group and controls. CONCLUSIONS: Polymorphic variants in MTHFR and MTRR, serum Folic acid (FA), Hcy and B12 levels in the male group and vitamin D levels in the female group are associated differentially with adverse pregnancy.


Assuntos
Ferredoxina-NADP Redutase , Metilenotetra-Hidrofolato Redutase (NADPH2) , Polimorfismo de Nucleotídeo Único , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Feminino , Ferredoxina-NADP Redutase/genética , Gravidez , Adulto , Polimorfismo de Nucleotídeo Único/genética , Masculino , Predisposição Genética para Doença , Adulto Jovem , Genótipo , Aborto Habitual/genética , Aborto Habitual/sangue , Estudos de Casos e Controles
2.
Environ Res ; 252(Pt 4): 119151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754608

RESUMO

The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.


Assuntos
Compostagem , Eliminação de Resíduos Líquidos , Compostagem/métodos , Eliminação de Resíduos Líquidos/métodos , Microbiologia do Solo , Biodegradação Ambiental , Solo , Actinobacteria , Actinomadura , Streptomyces , Substâncias Húmicas
3.
Biomed Chromatogr ; 38(3): e5806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087453

RESUMO

DK-GV-04P, chemically identified as 3-cinnamyl-2-(4-methoxyphenyl) quinazolin-4(3H)-one, is an investigational molecule synthesized at the Chemical Biology Laboratory of the National Institute of Pharmaceutical Education and Research-Ahmedabad. The compound has shown potential anticancer activity against squamous CAL27 cell lines. Metabolite identification and characterization are critical in drug discovery, providing key insights into a compound's pharmacokinetics, pharmacodynamics safety, and metabolic fate. The primary aim of the study was to identify and characterize the in vitro metabolites of DK-GV-04P. In silico identification of the site of metabolism was also carried out using xenosite online software. The molecule was incubated with human liver microsomes and human S9 liver fraction to generate in vitro metabolites, which were further identified and characterized using ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. A total of nine metabolites (four phase I and five phase II) were identified and characterized through tandem mass spectrometry. The major biotransformation pathways involved in metabolism of DK-GV-04P were hydroxylation, O-demethylation and glucuronidation. In addition to this, a detailed biotransformation pathway of DK-GV-04P has been established in this study.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Software , Descoberta de Drogas
4.
Appl Environ Microbiol ; 89(6): e0036623, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37255440

RESUMO

Ketone bodies, including acetoacetate, 3-hydroxybutyrate, and acetone, are produced in the liver of animals during glucose starvation. Enzymes for the metabolism of (R)-3-hydroxybutyrate have been extensively studied, but little is known about the metabolism of its enantiomer (S)-3-hydroxybutyrate. Here, we report the characterization of a novel pathway for the degradation of (S)-3-hydroxybutyrate in anaerobic bacteria. We identify and characterize a stereospecific (S)-3-hydroxylbutyrate dehydrogenase (3SHBDH) from Desulfotomaculum ruminis, which catalyzes the reversible NAD(P)H-dependent reduction of acetoacetate to form (S)-3-hydroxybutyrate. 3SHBDH also catalyzes oxidation of d-threonine (2R, 3S) and l-allo-threonine (2S, 3S), consistent with its specificity for ß-(3S)-hydroxy acids. Isothermal calorimetry experiments support a sequential mechanism involving binding of NADH prior to (S)-3-hydroxybutyrate. Homologs of 3SHBDH are present in anaerobic fermenting and sulfite-reducing bacteria, and experiments with Clostridium pasteurianum showed that 3SHBDH, acetate CoA-transferase (YdiF), and (S)-3-hydroxybutyryl-CoA dehydrogenase (Hbd) are involved together in the degradation of (S)-3-hydroxybutyrate as a carbon and energy source for growth. (S)-3-hydroxybutyrate is a human metabolic marker and a chiral precursor for chemical synthesis, suggesting potential applications of 3SHBDH in diagnostics or the chemicals industry. IMPORTANCE (R)-3-hydroxybutyrate is well studied as a component of ketone bodies produced by the liver and of bacterial polyesters. However, the biochemistry of its enantiomer (S)-3-hydroxybutyrate is poorly understood. This study describes the identification and characterization of a stereospecific (S)-3-hydroxylbutyrate dehydrogenase and its function in a metabolic pathway for the degradation of (S)-3-hydroxybutyrate as a carbon and energy source in anaerobic bacteria. (S)-3-hydroxybutyrate is a mammalian metabolic marker and a precursor for chemical synthesis and bioplastics, suggesting potential applications of these enzymes in diagnostics and biotechnology.


Assuntos
Acetoacetatos , Bactérias Anaeróbias , Animais , Humanos , Ácido 3-Hidroxibutírico , Bactérias Anaeróbias/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Hidroxibutiratos/metabolismo , Corpos Cetônicos/metabolismo , 3-Hidroxiacil-CoA Desidrogenase , Bactérias/metabolismo , Carbono , Treonina , Mamíferos
5.
Environ Res ; 237(Pt 2): 116999, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634690

RESUMO

To understand the dynamics of planktonic microbial community and its metabolism processes in subtropical drinking water river-reservoir system with lower man-made pollution loading, this study selected Dongzhen river-reservoir system in Mulan Creek as object to investigate spatial-temporal characteristics of community profile and functional genes involved in biological metabolism, and to analyze the influence of environmental factors. The results indicated that Proteobacteria and Actinobacteria were the most diverse phyla with proportion ranges of 9%-80% in target system, and carbohydrate metabolism (5.76-7.12 × 10-2), amino acid metabolism (5.78-7.21 × 10-2) and energy metabolism (4.07-5.17 × 10-2) were found to be the dominant pathways of biological metabolism. Although there were variations in biological properties both spatially and temporally, seasonal variation had a greater influence on microbial community and biological metabolism, than locational differences. Regarding the role of environmental factors, this study revealed that microbial diversity could be affected by multiple abiotic factors, with total organic carbon, total phosphorus and temperature being more influential (absolute value of standardized regression weights >2.13). Stochastic processes dominated the microbial community assembly (R2 of neutral community model = 0.645), while niche-based processes differences represented by nutrients, temperature and pH level played secondary roles (R > 0.388, P < 0.01). Notably, the synergistic influences among the environmental factors accounted for the higher percentages of community variation (maximum proportion up to 17.6%). Additionally, pH level, temperature, and concentrations of dissolved oxygen, carbon and nitrogen were found to be the significant factors affecting carbon metabolism pathways (P < 0.05), yet only total organic carbon significantly affected on nitrogen transformation (P < 0.05). In summary, the microbial profile in reservoir is not completely dominated by that in feeding river, and planktonic microbial community and its metabolism in subtropical drinking water river-reservoir system are shaped by multiple abiotic and biotic factors with underlying interactions.

6.
Environ Res ; 237(Pt 2): 117016, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657603

RESUMO

Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.

7.
Oral Dis ; 29(3): 1080-1088, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34739175

RESUMO

The folate-mediated one-carbon metabolism pathway is thought to play an important role in the etiology of non-syndromic oral clefts (NSOFC), although none of the genes in this pathway has shown significant signals in genome-wide association studies (GWAS). Recent evidence indicated that enhanced understanding could be gained by aggregating multiple SNPs effect simultaneously into polygenic risk score (PRS) to assess its association with disease risks. This study is aimed to assess the association between the genetic effect of folate-mediated one-carbon metabolism pathway and NSOFC risks using PRS based on a case-parent trio design. A total of 297 SNPs mapped from 18 genes in the folate-mediated one-carbon metabolism pathway were aggregated from a GWAS of 2458 case-parent trios recruited from an international consortium. We found a PRS based on the folate-mediated one-carbon metabolism pathway was significant among all NSOFC trios (OR = 1.95, 95% CI: 1.66-2.28, p = 2.39 × 10-16 ), as well as two major subtypes, non-syndromic cleft lip with or without cleft palate (NSCL/P) trios (OR = 1.71, 95% CI: 1.50-1.96, p = 7.66 × 10-15 ) and non-syndromic cleft palate only (NSCPO) trios (OR = 1.51, 95% CI: 1.36-1.68, p = 2.1 × 10-14 ). Similar results were also observed in further subgroup analyses stratified into Asian and European trios. The averaged PRS of the folate-mediated one-carbon metabolism pathway varied between the NSOFC case group and its comparison group (p < 0.05) with higher average PRS in the cases. Moreover, the top 5% pathway PRS group had 2.25 (95% CI: 1.85-2.73) times increased NSOFC risk, also 3.09 (95% CI: 2.50-3.81) and 2.06 (95% CI: 1.39-3.02) times increased risk of NSCL/P and NSCPO compared to the remainder of the distribution. The results of our study confirmed the folate-mediated one-carbon metabolism pathway was important in controlling risk to NSOFC and this study enhanced evidence towards understanding the genetic risks of NSOFC.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fissura Palatina/genética , Estudo de Associação Genômica Ampla , Ácido Fólico , Fenda Labial/genética , Carbono , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
8.
Environ Toxicol ; 38(12): 2915-2925, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37551664

RESUMO

Inflammatory microenvironment may take a promoting role in lung tumorigenesis. However, the molecular characteristics underlying inflammation-related lung cancer remains unknown. In this work, the inflammation-related lung tumorigenesis mouse model was established by treated with B(a)P (1 mg/mouse, once a week for 4 weeks), followed by LPS (2.5 µg/mouse, once every 3 weeks for five times), the mice were sacrificed 30 weeks after exposure. TMT-labeled quantitative proteomics and untargeted metabolomics were used to interrogate differentially expressed proteins and metabolites in different mouse cancer tissues, followed by integrated crosstalk between proteomics and metabolomics through Spearman's correlation analysis. The result showed that compared with the control group, 103 proteins and 37 metabolites in B(a)P/LPS group were identified as significantly altered. By searching KEGG pathway database, proteomics pathways such as Leishmaniasis, Asthma and Intestinal immune network for IgA production, metabolomics pathways such as Vascular smooth muscle contraction, Linoleic acid metabolism and cGMP-PKG signaling pathway were enriched. A total of 22 pathways were enriched after conjoint analysis of the proteomic and metabolomics, and purine metabolism pathway, the unique metabolism-related pathway, which included significantly altered protein (adenylate cyclase 4, ADCY4) and metabolites (L-Glutamine, guanosine monophosphate (GMP), adenosine and guanosine) was found. Results suggested purine metabolism may contribute to the inflammation-related lung tumorigenesis, which may provide novel clues for the therapeutic strategies of inflammation-related lung cancer.


Assuntos
Neoplasias Pulmonares , Pneumonia , Camundongos , Animais , Proteômica , Lipopolissacarídeos/toxicidade , Carcinogênese/induzido quimicamente , Transformação Celular Neoplásica , Pulmão/metabolismo , Metabolômica , Inflamação/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Purinas/toxicidade , Microambiente Tumoral
9.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902009

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.


Assuntos
Apocynum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Trealose , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Filogenia , Família Multigênica
10.
J Environ Manage ; 326(Pt B): 116852, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435124

RESUMO

To solve polycyclic aromatic hydrocarbons (PAHs) pollution, composting was chosen as a remediation method. During composting, the dissipation of PAHs was carried out by resource utilization of organic solid waste and its degradation by bacteria. This study was conducted by co-composting with contaminated soil and cow manure. The results showed that the degradation rates of naphthalene (Nap), phenanthrene (Phe), and benzo[α]pyrene (BaP) could reach 82.2%, 79.4%, and 59.6% respectively during composting. Cluster analysis indicated that polyphenol oxidase (PPO), laccase, and protease were important drivers of PAHs transformation. The content of humic substances (HS) was 106.67 g/kg in PAH treatment, which was significantly higher than that in the control group at 65 days. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) and network analysis was used to infer the degradation mechanism of PAHs by microorganisms. The degradation of PAHs by PPO was found to have a significant contribution to the formation of HS. It was shown that PAHs and metabolic intermediates were more inclined to be oxidized and decomposed by PPO to form quinone, which in turn condensed with amino acids to form HS. Composting could promote the degradation of PAHs while improving the quality of compost, achieving a win-win situation.


Assuntos
Compostagem , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Bovinos , Solo/química , Hidrocarbonetos Policíclicos Aromáticos/química , Esterco , Filogenia , Poluentes do Solo/análise , Biodegradação Ambiental , Bactérias/metabolismo , Substâncias Húmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA