Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 440(1): 114101, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815788

RESUMO

Se-methylselenocysteine (MSC) is recognized for its potential in cancer prevention, yet the specific effects and underlying processes it initiates within non-small cell lung cancer (NSCLC) remain to be fully delineated. Employing a comprehensive array of assays, including CCK-8, colony formation, flow cytometry, MitoSOX Red staining, wound healing, transwell, and TUNEL staining, we evaluated MSC's effects on A549 and 95D cell lines. Our investigation extended to the ROS-mediated NF-κB signaling pathway, utilizing Western blot analysis, P65 overexpression, and the application of IκB-α inhibitor (BAY11-7082) or N-acetyl-cysteine (NAC) to elucidate MSC's mechanism of action. In vivo studies involving subcutaneous xenografts in mice further confirmed MSC's inhibitory effect on tumor growth. Our findings indicated that MSC inhibited the proliferation of A549 and 95D cells, arresting cell cycle G0/G1 phase and reducing migration and invasion, while also inducing apoptosis and increasing intracellular ROS levels. This was accompanied by modulation of key proteins, including the upregulation of p21, p53, E-cadherin, Bax, cleaved caspase-3, cleaved-PARP, and downregulation of CDK4, SOD2, GPX-1. MSC was found to inhibit the NF-κB pathway, as evidenced by decreased levels of P-P65 and P-IκBα. Notably, overexpression of P65 and modulation of ROS levels with NAC could attenuate MSC's effects on cellular proliferation and metastasis. Moreover, MSC significantly curtailed tumor growth in vivo and disrupted the NF-κB signaling pathway. In conclusion, our research demonstrates that MSC exhibits anticancer effects against NSCLC by modulating the ROS/NF-κB signaling pathway, suggesting its potential as a therapeutic agent in NSCLC treatment.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , NF-kappa B , Espécies Reativas de Oxigênio , Selenocisteína , Transdução de Sinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Selenocisteína/análogos & derivados , Selenocisteína/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Células A549 , Compostos Organosselênicos/farmacologia , Camundongos Endogâmicos BALB C
2.
Anal Bioanal Chem ; 416(11): 2835-2848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286852

RESUMO

This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.


Assuntos
Neoplasias , Compostos de Selênio , Selênio , Humanos , Selenometionina , Neoplasias/tratamento farmacológico , Biomarcadores
3.
Biotechnol Appl Biochem ; 71(3): 609-626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311980

RESUMO

In this study, the transcriptome analysis was practiced to identify potential genes of probiotic Bacillus subtilis BSN313 involved in selenium (Se) enrichment metabolism. The transcriptomic variation of the strain was deliberated in presence of three different sodium selenite concentrations (0, 3, and 20 µg/mL). The samples were taken at 1 and 13 h subsequent to inoculation of selenite and gene expression profiles in Se metabolism were analyzed through RNA sequencing. The gene expression levels of the pre log phase were lower than the stationary phase. It is because, the bacteria has maximum grown with high concentration of Se (enriched with organic Se), at stationary phase. Bacterial culture containing 3 µg/mL concentration of inorganic Se (sodium selenite) has shown highest gene expression as compared to no or high concentration of Se. This concentration (3 µg/mL) of sodium selenite (as Se) in the medium promoted the upregulation of thioredoxin reductase expression, whereas its higher Se concentration inhibited the formation of selenomethionine (SeMet). The result of 5 L bioreactor fermentation showed that SeMet was also detected in the fermentation supernatant as the growth entered in the late stationary phase and reached up to 857.3 ng/mL. The overall intracellular SeMet enriched content in BSN313 was extended up to 23.4 µg/g dry cell weight. The other two selenoamino acids (Se-AAs), methyl-selenocysteine, and selenocysteine were hardly detected in medium supernatant. From this study, it was concluded that SeMet was the highest content of organic Se byproduct biosynthesized by B. subtilis BSN313 strain in Se-enriched medium during stationary phase. Thus, B. subtilis BSN313 can be considered a commercial probiotic strain that can be used in the food and pharmaceutical industries. This is because it can meet the commercial demand for Se-AAs (SeMet) in both industries.


Assuntos
Bacillus subtilis , Selênio , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Selênio/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Selenito de Sódio/metabolismo , Transcriptoma
4.
Microb Cell Fact ; 22(1): 215, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853389

RESUMO

BACKGROUND: Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. RESULTS: First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 µg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 µg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. CONCLUSIONS: The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.


Assuntos
Selênio , Vitamina U , Selenocisteína/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cisteína/metabolismo , Selênio/metabolismo
5.
Bioorg Chem ; 140: 106815, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37672953

RESUMO

PI3Kδ inhibitors play an important role in the treatment of leukemia, lymphoma and autoimmune diseases. Herein, using our reported compounds as the lead compound, we designed and synthesized a series of selenium-containing PI3Kδ inhibitors based on quinazoline and pyrido[3,2-d]pyrimidine skeletons. Among them, compound Se15 showed sub-nanomolar inhibition against PI3Kδ and strong δ-selectivity. Moreover, Se15 showed potent anti-proliferative effect on SU-DHL-6 cells with an IC50 value of 0.16 µM. Molecular docking study showed that Se15 was able to form multiple hydrogen bonds with PI3Kδ and was close proximity and stacking with PI3Kδ selective region. In conclusion, the Se-containing compound Se15 bearing pyrido[3,2-d]pyrimidine scaffold is a novel potent and selective PI3Kδ inhibitor. The introduction of selenium can enrich the structure of PI3Kδ inhibitors and provide a new idea for design of novel PI3Kδ inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Leucemia , Selênio , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Selênio/química , Selênio/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Desenho de Fármacos
6.
Appl Microbiol Biotechnol ; 107(9): 2843-2854, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941436

RESUMO

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.


Assuntos
Bacillus subtilis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina O-Acetiltransferase/metabolismo , Metionina Adenosiltransferase/metabolismo , Engenharia Metabólica , S-Adenosilmetionina/metabolismo
7.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513373

RESUMO

Cyclocarya paliurus (CP) contains triterpene acids that can improve glucose and lipid metabolism disorders. However, controlling the composition and content of these active ingredients in CP extracts is challenging. The main active components in CP triterpene acids, including ursolic acid (UA), oleanolic acid (OA), and betulinic acid (BA), exhibit antihyperglycemic and antihypertensive effects. The response surface methodology was utilized to design and optimize the ratio of UA, OA, and BA based on the inhibition rate of pancrelipase and α-amylase. The proportional mixture of UA, OA, and BA resulted in the formation of a complex known as Cyclocarya paliurus triterpenoid acid (TAC). Se-methylselenocysteine (MSC), a compound with various physiological functions such as antioxidant properties and tumor inhibition, has been used in combination with TAC to form the TAC/MSC complex. Our data demonstrate that TAC/MSC improved palmitic acid (PA)-induced insulin resistance in HepG2 cells through activating the phosphoinositide 3-kinase (PI3K) /protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3ß) pathway. Moreover, TAC/MSC effectively improved hyperglycemia, glucose intolerance, insulin resistance, and lipid metabolism disorder in mice with type 2 diabetes mellitus (T2DM), attenuated hepatic steatosis, and reduced oxidative stress to alleviate T2DM characteristics.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Triterpenos , Camundongos , Animais , Glucose/metabolismo , Triterpenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo dos Lipídeos , Glicogênio Sintase Quinase 3 beta/metabolismo
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 532-538, 2023 May.
Artigo em Zh | MEDLINE | ID: mdl-37248580

RESUMO

Objective: To investigate the effect of methylselenocysteine (MSC) on the function of homotypic gap junction (GJ) composed of connexin (Cx) 26 and its regulation of chemotherapeutic drug cytotoxicity. Methods: The Tet-on HeLa cells transfected with and stably expressing Cx26 were used as the tool cells. Effects of MSC on cell growth, GJ function, and Cx26 protein expression were examined by MTT method, parachute assay, and Western blot analysis, respectively. The cytotoxicity of chemotherapeutic drugs was determined by standard colony-forming assay, and the relationship between MSC's effect on cytotoxicity of these chemotherapeutic drugs and its regulation of GJ was further analyzed. Results: In Tet-on HeLa cells, doxycycline (Dox) can induce the expression of Cx26, which could then form functional GJs. Within a concentration range of 50 µmol/L, MSC had no significant effect on HeLa cell growth. Non-toxic concentrations of MSC can enhance GJs in a concentration-dependent manner and exert its effect at the nanomolar level. This effect was associated with an induction of Cx26 protein expression by MSC. Among the three common chemotherapeutic agents with different mechanisms of action, etoposide (Eto) presented cytotoxicity differences between HeLa cells cultured at low density (nonconfluent, no GJ formed) and high density (confluent, GJ formed). What's more, the inhibitory effect of Eto combined with MSC on HeLa cell colony formation was stronger than that of Eto alone, and this effect occurred only in HeLa cells with GJ formation. Conclusion: MSC can potentiate the cytotoxicity of Eto by enhancing the GJs composed of Cx26, indicating that combined strategy of selenide and chemotherapy shows potential value in the treatment of malignant tumors.


Assuntos
Conexina 26 , Junções Comunicantes , Humanos , Conexina 26/metabolismo , Etoposídeo/farmacologia , Junções Comunicantes/metabolismo , Células HeLa
9.
Biol Pharm Bull ; 45(4): 467-476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370271

RESUMO

Homomeric or heteromeric connexin (Cx) hemichannels-composed gap junction (GJ) intercellular channel can mediate direct cell-to-cell communication. Accumulating studies indicate that GJs potentiate the cytotoxicity of antitumor drugs in malignant cells. Methylselenocysteine (MSC), a selenium compound from garlic, has been reported to modulate the activity of antineoplastic drugs, but the underlying mechanism remains unclear. This study investigates the efficacy of MSC on chemotherapeutic drugs-induced cytotoxicity and the relationship between this effect and the regulation of GJ function by MSC. Firstly, a doxycycline-regulated HeLa cell line expressing heteromeric Cx26/Cx32 was used as a tool. Etoposide, but not cisplatin or 5-fluorouracil, showed remarkable cytotoxicity in high-density (with GJ formation) cultures than in low-density (without GJ formation) in transformed HeLa cells. And cell density had no effect on etoposide-mediated cytotoxicity in the absence of Cx expression. MSC substantially enhanced etoposide-induced cytotoxicity, and this effect was only detected in the presence of functional GJs. Subsequently, MSC potentiated structural Cx expression as evidenced by increased dye coupling, but no alteration in Cx mRNA expression level in either transformed or primary cancer cell lines. Finally, a redox mechanism involving glutathione (GSH) was found to be related to the posttranscriptional modulation of Cx expression by MSC in HeLa cells. In conclusion, we provide the novel finding that MSC increases etoposide-mediated cytotoxicity by enhancing GJ activity, due to elevated Cx expression through a GSH-dependent posttranscriptional mechanism. More generally, the study highlights potential benefit of the combination of GJ modulators and chemotherapeutic agents in anticancer treatment.


Assuntos
Conexinas , Junções Comunicantes , Conexinas/metabolismo , Etoposídeo/farmacologia , Células HeLa , Humanos , Selenocisteína/análogos & derivados
10.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216476

RESUMO

The review presents the latest data on the role of selenium-containing agents in the regulation of diseases of the immune system. We mainly considered the contributions of selenium-containing compounds such as sodium selenite, methylseleninic acid, selenomethionine, and methylselenocysteine, as well as selenoproteins and selenium nanoparticles in the regulation of defense mechanisms against various viral infections, including coronavirus infection (COVID-19). A complete description of the available data for each of the above selenium compounds and the mechanisms underlying the regulation of immune processes with the active participation of these selenium agents, as well as their therapeutic and pharmacological potential, is presented. The main purpose of this review is to systematize the available information, supplemented by data obtained in our laboratory, on the important role of selenium compounds in all of these processes. In addition, the presented information makes it possible to understand the key differences in the mechanisms of action of these compounds, depending on their chemical and physical properties, which is important for obtaining a holistic picture and prospects for creating drugs based on them.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Agentes de Imunomodulação/farmacologia , Compostos de Selênio/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/química , Humanos , Sistema Imunitário/efeitos dos fármacos , Agentes de Imunomodulação/química , Compostos Organosselênicos/imunologia , Compostos Organosselênicos/farmacocinética , Compostos Organosselênicos/farmacologia , Compostos de Selênio/imunologia , Selenocisteína/análogos & derivados , Selenocisteína/imunologia , Selenocisteína/farmacologia , Selenometionina/farmacocinética , Selenometionina/farmacologia , Selenito de Sódio/farmacologia
11.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884764

RESUMO

Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Acetilação/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Epigênese Genética/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Código das Histonas/genética , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular , Nanopartículas , Neoplasias/genética , Neoplasias/metabolismo , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
12.
J Exp Bot ; 70(21): 6401-6416, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504785

RESUMO

Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.


Assuntos
Metiltransferases/metabolismo , Mostardeira/enzimologia , Sequência de Aminoácidos , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Peroxidase/metabolismo , Metiltransferases/química , Mostardeira/genética , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Selênico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/genética , Regulação para Cima/efeitos dos fármacos
13.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380599

RESUMO

Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies.


Assuntos
Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , MicroRNAs/genética , Selenocisteína/análogos & derivados , Selenometionina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Fluoruracila/uso terapêutico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos Nus , Selenocisteína/uso terapêutico , Topotecan/uso terapêutico
14.
Prostate ; 75(9): 1001-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25754033

RESUMO

BACKGROUND: Castration-resistant progression of prostate cancer after androgen deprivation therapy remains a critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor activity is an established driver of castration-resistant progression, and upregulation of androgen receptor expression has been implicated to contribute to the resurgent androgen receptor activity. We reported previously that methylselenocysteine can decrease the expression and activity of androgen receptor. Here we investigated the ability of methylselenocysteine to inhibit castration-resistant progression of prostate cancer. METHODS: The regrowth of LNCaP prostate cancer xenografts after castration was monitored. The levels of prostate-specific antigen in mouse serum were measured by ELISA. Tumor cell proliferation and apoptosis were analyzed via Ki-67 immunohistochemistry and TUNEL assay, respectively. Intratumoral angiogenesis was assessed by immunohistochemistry staining of vascular endothelial growth factor and CD31. RESULTS: We showed that methylselenocysteine delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation. This was accompanied by decreased serum levels of prostate-specific antigen, inhibition of prostate cancer cell proliferation and tumor angiogenesis, as well as downregulation of androgen receptor and induction of apoptosis in the relapsed tumors. CONCLUSIONS: The present study represents the first to show the preclinical efficacy of methylselenocysteine in delaying castration-resistant progression of prostate cancer. The findings provide a rationale for evaluating the clinical application of combining methylselenocysteine with androgen deprivation therapy for the treatment of advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/prevenção & controle , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Selenocisteína/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Antígeno Prostático Específico/sangue , Distribuição Aleatória , Selenocisteína/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Am J Bot ; 101(11): 1895-905, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25366855

RESUMO

PREMISE OF THE STUDY: Are there dimensions of symbiotic root interactions that are overlooked because plant mineral nutrition is the foundation and, perhaps too often, the sole explanation through which we view these relationships? In this paper we investigate how the root nodule symbiosis in selenium (Se) hyperaccumulator and nonaccumulator Astragalus species influences plant selenium (Se) accumulation. METHODS: In greenhouse studies, Se was added to nodulated and nonnodulated hyperaccumulator and nonaccumulator Astragalus plants, followed by investigation of nitrogen (N)-Se relationships. Selenium speciation was also investigated, using x-ray microprobe analysis and liquid chromatography-mass spectrometry (LC-MS). KEY RESULTS: Nodulation enhanced biomass production and Se to S ratio in both hyperaccumulator and nonaccumulator plants. The hyperaccumulator contained more Se when nodulated, while the nonaccumulator contained less S when nodulated. Shoot [Se] was positively correlated with shoot N in Se-hyperaccumulator species, but not in nonhyperaccumulator species. The x-ray microprobe analysis showed that hyperaccumulators contain significantly higher amounts of organic Se than nonhyperaccumulators. LC-MS of A. bisulcatus leaves revealed that nodulated plants contained more γ-glutamyl-methylselenocysteine (γ-Glu-MeSeCys) than nonnodulated plants, while MeSeCys levels were similar. CONCLUSIONS: Root nodule mutualism positively affects Se hyperaccumulation in Astragalus. The microbial N supply particularly appears to contribute glutamate for the formation of γ-Glu-MeSeCys. Our results provide insight into the significance of symbiotic interactions in plant adaptation to edaphic conditions. Specifically, our findings illustrate that the importance of these relationships are not limited to alleviating macronutrient deficiencies.


Assuntos
Astrágalo/metabolismo , Rhizobium/fisiologia , Selênio/metabolismo , Simbiose , Astrágalo/microbiologia , Biomassa , Cisteína/análogos & derivados , Cisteína/metabolismo , Compostos Organosselênicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Nodulação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo , Espectroscopia por Absorção de Raios X
16.
Regul Toxicol Pharmacol ; 70(3): 720-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25444999

RESUMO

The significant toxicity of selenium emphasizes the need to assess the health risk of various selenocompounds as nutritional supplements. Se-methylselenocysteine (SeMC) was recently reported to be more bioactive but the toxicological effects have not been sufficiently characterized. This study aimed to evaluate the safety of SeMC and provide the Acceptable Daily Intake (ADI) for its use in human diet. Our results demonstrated that SeMC, with the Median Lethal Dose (LD50) of 12.6 and 9.26mg/kg BW in female and male mice, was of high potent of health hazard under acute oral exposure, but a battery of tests including Ames test, micronucleus assay and mouse sperm malformation assay suggested that SeMC was not genotoxic. The repeated dose study indicated little systemic toxicity of SeMC at supernutritional levels (0.5, 0.7, 0.9mg/kg BW/day) after 90-day oral exposure. Importantly, the 95% lower confidence value of Benchmark Dose (BMDL) was estimated as 0.34mg/kg BW/day according to the elevated relative liver weight. The ADI for human was established at 3.4µg/kg BW/day. The results suggested greater safety of SeMC as a nutritional selenium supplement, but health risk needs to be further evaluated when SeMC is applied beyond this level to achieve cancer chemoprevention.


Assuntos
Suplementos Nutricionais/toxicidade , Selenocisteína/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Dose Letal Mediana , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Ratos Sprague-Dawley , Selênio , Selenocisteína/toxicidade , Espermatozoides/efeitos dos fármacos , Espermatozoides/crescimento & desenvolvimento , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
17.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602484

RESUMO

Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 µg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.

18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Artigo em Zh | MEDLINE | ID: mdl-38752248

RESUMO

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Assuntos
Regeneração Nervosa , Estresse Oxidativo , Ratos Sprague-Dawley , Células de Schwann , Nervo Isquiático , Selênio , Selenocisteína , Animais , Regeneração Nervosa/efeitos dos fármacos , Ratos , Masculino , Selenocisteína/análogos & derivados , Selenocisteína/farmacologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Selênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/metabolismo
19.
Food Chem X ; 21: 101088, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226325

RESUMO

The production of selenium-enriched fish contributes to alleviating selenium deficiency for humans. In this study, selenium nanoparticles (SeNPs) comparable in bioavailability to selenomethionine (SeMet), increased SeMet content in O. macrolepis (Onychostoma macrolepis) muscle. Additionally, dietary SeNPs significantly enhanced selenocysteine (SeCys2) and methylselenocysteine (MeSeCys) levels in O. macrolepis muscle. The effect of SeNPs on selenium speciation in grass carp muscle was consistent with O. macrolepis results. SeCys2 and MeSeCys showed antioxidant capacity in HEK293T cells, indicating enhanced health benefits of Se-enriched fish produced using SeNPs. Furthermore, the addition of 0.3 mg/kg SeNPs significantly improved the flesh quality of O. macrolepis by reducing the content of crude fat and heavy metals, as well as increasing the levels of crude protein, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs). Therefore, selenium-enriched fish produced from SeNPs is a good source for improving human dietary selenium intake.

20.
Int J Cancer ; 133(9): 2225-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23575870

RESUMO

The next-generation antiandrogen MDV3100 prolongs overall survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patient responses are variable, and survival benefit remains relatively small. Developing effective modality to improve MDV3100 efficacy is urgently needed. Recent evidence suggests that constitutively active androgen receptor splice variants (AR-Vs) drive resistance to MDV3100. In our study, we show that methylselenol prodrug downregulates the expression and activity of both the full-length AR (AR-FL) and AR-Vs. The downregulation is independent of androgen and could be attributable to repressed transcription of the AR gene. Cotreatment with methylselenol prodrug and MDV3100 suppresses AR signaling more dramatically than either agent alone, and synergistically inhibits the growth of CRPC cells in vitro. The combinatorial efficacy is observed in not only AR-V-expressing cells but also cells expressing predominantly AR-FL, likely owing to the ability of the two drugs to block the AR signaling cascade at distinct steps. Ectopic expression of AR-FL or AR-V7 attenuates the combinatorial efficacy, indicating that downregulating AR-FL and AR-V7 is importantly involved in mediating the combinatorial efficacy. Significantly, methylselenol prodrug also downregulates AR-FL and AR-Vs in vivo and substantially improves the antitumor efficacy of MDV3100. These findings support a potential combination therapy for improving MDV3100 efficacy, and provide a rationale for evaluating the clinical application of combining methylselenol prodrug with MDV3100 for the treatment of CRPC.


Assuntos
Antagonistas de Androgênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metanol/análogos & derivados , Orquiectomia , Compostos Organosselênicos/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Linhagem Celular Tumoral , Cromatografia em Camada Fina , DNA de Neoplasias/genética , Humanos , Masculino , Metanol/farmacologia , Camundongos , Camundongos Nus , Nitrilas , Feniltioidantoína/farmacologia , Reação em Cadeia da Polimerase , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA