Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 439(2): 114099, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38802035

RESUMO

Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , MicroRNAs , Neoplasias Gástricas , Linfócitos T Citotóxicos , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética
2.
Mol Cancer ; 23(1): 91, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715012

RESUMO

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Receptor IGF Tipo 1 , Transdução de Sinais , Humanos , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Acrilamidas/farmacologia , RNA Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Animais , Camundongos , Apoptose , Movimento Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino , Indóis , Pirimidinas
3.
Neurochem Res ; 49(1): 222-233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715822

RESUMO

The role of microglia in traumatic brain injury (TBI) has gained considerable attention. The present study aims to elucidate the potential mechanisms of Long intergenic non-protein coding RNA 707 (LINC00707) in TBI-induced microglia activation and inflammatory factor release. An in vivo model of rat TBI and in vitro microglia model was established using Controlled cortex injury (CCI) and lipopolysaccharide (LPS) stimulation. RT-qPCR to detect LINC00707 levels in rat cerebral cortex or cells. Modified Neurological Impairment Score (mNSS) and Morris Water Maze test was conducted to assess the neurological deficits and cognitive impairment. ELISA analysis of pro-inflammatory factors levels. CCK-8 and flow cytometry for cell viability and apoptosis levels. Dual-luciferase report and RIP assay to validate the targeting relationship between LINC00707 and miR-30a-5p. LINC00707 was elevated in the TBI rat cerebral cortex and LPS-induced microglia, while miR-30a-5p was noticeably decreased (P < 0.05). Increased mNSS, cognitive dysfunction, and brain edema in TBI rats were all prominently reversed by silencing of LINC00707, but this reversal was partially abrogated by decreasing miR-30a-5p (P < 0.05). Inhibition of LINC00707 suppressed the overproduction of inflammatory factors in TBI rats (P < 0.05). LPS decreased microglial cell viability, increased apoptosis, and promoted inflammatory overproduction than control, but the silencing of LINC00707 reversed its effect. Suppression of miR-30a-5p attenuated this reversal (P < 0.05). miR-30a-5p was the target miRNA of LINC00707. All in all, the results suggested that inhibiting LINC00707/miR-30a-5p axis could alleviate the progression of TBI by suppressing the inflammation and apoptosis of microglia cells.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Ratos , Animais , Microglia , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Inflamação/genética , Apoptose
4.
Mol Cell Probes ; 75: 101957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513992

RESUMO

With rising society stress, depression-induced osteoporosis is increasing. However, the mechanism involved is unclear. In this study, we explored the effect of plasma exosomal miRNAs on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation in a chronic unpredictable mild stress (CUMS)-induced depression rat model. After 12 weeks of CUMS-induced depression, the pathological changes in the bone tissue and markers of osteogenic differentiation were tested by micro-computed tomography, hematoxylin-eosin staining, and quantitative real-time reverse transcription PCR (qRT-PCR). Plasma exosomes from rats were isolated and co-incubated with BMSCs for 14 d to detect the effect on osteogenic markers. Next-generation sequencing identified the miRNAs in the plasma exosomes, and the differential miRNAs were analyzed and verified by qRT-PCR. BMSCs were infected with lentivirus to upregulate miRNA-30a-5p and incubated in a medium that induced osteogenic differentiation for 14 d. The effect of miR-30a-5p on osteogenic differentiation was determined by qPCR and alizarin red staining. CUMS-induced depression rat model was established successfully, and exhibited reduced bone mass and damaged bone microstructure compared to that of the controls. The observed pathological changes suggested the occurrence of osteoporosis in the CUMS group, and the mRNA expression of osteogenic markers was also significantly reduced. Incubation of BMSCs with plasma exosomes from the CUMS group for 14 d resulted in a significant decrease in the expression of osteogenic markers. Twenty-five differentially expressed miRNAs in plasma exosomes were identified and upregulation of miR-30a-5p was observed to significantly inhibit the expression of osteogenic markers in BMSCs. Our findings contributed to a comprehensive understanding of the mechanism of osteoporosis caused by depression, and demonstrated the potential of miR-30a-5p as a novel biomarker or therapeutic target for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , Depressão , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Animais , Ratos , Diferenciação Celular/genética , Depressão/genética , Depressão/sangue , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/sangue , Osteogênese/genética , Osteoporose/genética , Osteoporose/sangue , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/sangue
5.
Oral Dis ; 29(4): 1550-1564, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262985

RESUMO

OBJECTIVES: This study aimed to experimentally validate dysregulated expression of miRNA candidates selected through updated meta-analysis of most commonly deregulated miRNAs in oral cancer and to explore their diagnostic and prognostic potential. MATERIALS AND METHODS: Five miRNAs (miR-31-3p, miR-135b-5p, miR-18a-5p, miR-30a-5p and miR-139-5p) from updated meta-signature were selected for validation by qRT-PCR method in 35 oral cancer clinical specimens and adjacent non-cancerous tissue. RESULTS: Updated meta-analysis has identified 13 most commonly deregulated miRNAs in oral cancer. Seven miRNAs were consistently up-regulated (miR-21-5p, miR-31-3p, miR-135b-5p, miR-31-5p, miR-424-5p, miR-18a-5p and miR-21-3p), while five were down-regulated (miR-139-5p, miR-30a-3p, miR-375-3p, miR-376c-3p and miR-30a-5p). Increased expression of miR-31-3p and miR-135b-5p, and decreased expression of miR-139-5p and miR-30a-5p were confirmed in oral cancer compared to adjacent non-cancerous tissue. A three miRNAs combination (miR-31-3p, miR-139-5p and miR-30a-5p) gave the most promising diagnostic potential for discriminating oral cancer from non-cancerous tissue (AUC: 0.780 [95% CI: 0.673-0.886], p < 0.0005, sensitivity 94.3%, specificity 51.4%). High expression of miR-135b-5p, miR-18a-5p and miR-30a-5p was associated with poor survival (p = 0.003, p = 0.048, p = 0.016 respectively). CONCLUSION: miR-31-3p, miR-139-5p and miR-30a-5p panel was confirmed as a potential diagnostic biomarker when distinguishing oral cancer from non-cancerous tissue. miR-135b-5p, miR-18a-5p and miR-30a-5p might serve as potential biomarkers of poor survival of oral cancer patients.


Assuntos
MicroRNAs , Neoplasias Bucais , Humanos , MicroRNAs/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Prognóstico , Biomarcadores Tumorais/genética , Reação em Cadeia da Polimerase
6.
Cancer Sci ; 113(9): 2986-3001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35534983

RESUMO

Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin ß3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas
7.
Cancer Cell Int ; 22(1): 103, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246136

RESUMO

BACKGROUND: A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. However, its role in hydatidiform moles is not clear. METHODS: Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with different expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation assays were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved. RESULT: Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results in excessive proliferation of trophoblast cells in the hydatidiform mole. CONCLUSIONS: In this study, we found that miR-30a plays an important role in the development of the hydatidiform mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell transformation.

8.
Respir Res ; 23(1): 17, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093061

RESUMO

BACKGROUND: Type 2-high asthma is a prominent endotype of asthma which is characterized by airway eosinophilic inflammation. Airway epithelial cells play a critical role in the pathogenesis of asthma. Our previous miRNA profiling data showed that miR-30a-3p was downregulated in bronchial epithelial cells from asthma patients. We hypothesize that epithelial miR-30a-3p plays a role in asthma airway inflammation. METHODS: We measured miR-30a-3p expression in bronchial brushings of asthma patients (n = 51) and healthy controls (n = 16), and analyzed the correlations between miR-30a-3p expression and airway eosinophilia. We examined whether Runt-related transcription factor 2 (RUNX2) was a target of miR-30a-3p and whether RUNX2 bound to the promoter of high mobility group box 1 (HMGB1) by using luciferase reporter assay and chromatin immunoprecipitation (ChIP)-PCR. The role of miR-30a-3p was also investigated in a murine model of allergic airway inflammation. RESULTS: We found that miR-30a-3p expression were significantly decreased in bronchial brushings of asthma patients compared to control subjects. Epithelial miR-30a-3p expression was negatively correlated with parameters reflecting airway eosinophilia including eosinophils in induced sputum and bronchial biopsies, and fraction of exhaled nitric oxide in asthma patients. We verified that RUNX2 is a target of miR-30a-3p. Furthermore, RUNX2 bound to the promoter of HMGB1 and upregulated HMGB1 expression. RUNX2 and HMGB1 expression was both enhanced in airway epithelium and was correlated with each other in asthma patients. Inhibition of miR-30a-3p enhanced RUNX2 and HMGB1 expression, and RUNX2 overexpression upregulated HMGB1 in BEAS-2B cells. Intriguingly, airway overexpression of mmu-miR-30a-3p suppressed Runx2 and Hmgb1 expression, and alleviated airway eosinophilia in a mouse model of allergic airway inflammation. CONCLUSIONS: Epithelial miR-30a-3p could possibly target RUNX2/HMGB1 axis to suppress airway eosinophilia in asthma.


Assuntos
Asma/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Eosinofilia/genética , Regulação da Expressão Gênica , Proteína HMGB1/genética , Inflamação/genética , MicroRNAs/genética , Animais , Asma/complicações , Asma/patologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Modelos Animais de Doenças , Eosinofilia/complicações , Eosinofilia/patologia , Feminino , Proteína HMGB1/biossíntese , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Escarro/metabolismo , Regulação para Cima
9.
Pharmacol Res ; 178: 106153, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257899

RESUMO

Alzheimer's disease (AD) pathogenesis is known to involve a dysregulation of microRNA expression, and these intricate transcriptional cascades between multiple pathological manifestations affect brain homeostasis. Previous studies have revealed that miR-30a-5p participates in neuronal damage and is upregulated in amyloid beta-peptide (Aß)-induced models. However, its involvement in cognition dysfunction and the AD pathogenic process remains unclear. In the present study, we investigated the mechanisms underlying miR-30a-5p involvement in AD, and its potential as a therapeutic target. Our results reveal that miR-30a-5p was substantially upregulated during the pathological progression of AD, presenting as an increased level in the cortex and hippocampus of APP/PS1 and five familial AD mice, AD cells, and the plasma of AD patients. miR-30a-5p overexpression also induced neuronal injury and apoptosis in AD cells. Mechanistically, miR-30a-5p negatively regulated ADAM10 and SIRT1 by directly binding to their 3'-untranslated regions. A possible association between SIRT1 and ADAM10 was observed via their rescue of miR-30a-5p-induced RARß downregulation. Interestingly, miR-30a-5p was observed to inhibit the nonamyloidogenic pathway by down regulating ADAM10 and SIRT1, thus promoting Aß1-42 overproduction. In APP/PS1 mice, knockdown of miR-30a-5p ameliorated cognitive dysfunctions and neurodegenerative changes, suppressed Aß accumulation, and inhibited Aß1-42 generation by enhancing the nonamyloidogenic pathway via upregulation of ADAM10 and SIRT1. However, these improvements were blocked by ADAM10 and SIRT1 silencing. In conclusion, the present study implicates dysregulation of the miR-30a-5p/ ADAM10/ SIRT1 pathway as a critical mediator of AD pathogenesis, highlighting the importance of epigenetics and identifying novel therapeutic targets in the nonamyloidogenic pathway.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , MicroRNAs , Regiões 3' não Traduzidas , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
10.
Immunol Invest ; 51(6): 1694-1706, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35023444

RESUMO

The microRNA miR-30a has been reported to mitigate podocyte damage and resist injurious factors in lupus nephritis (LN), but the precise molecular mechanisms underlying these effects remain elusive. We hypothesized that miR-30a can ameliorate podocyte injury by downregulating the Notch1 signaling pathway and investigated the role of miR-30a in the pathogenesis of podocyte-treated with Immunoglobulin G from patients with LN (IgG-LN). The study enrolled 30 patients from new-onset systemic lupus erythematosus and 28 healthy individuals, then evaluated the levels of their serum miR-30a using RT-qPCR. Additionally, MPC5 cells were transfected with NICD-vector to overexpress Notch1, then with miR-30a mimics or inhibitors to determine miR-30a effects on Notch1. Analysis of function and regulatory mechanisms were performed with RT-qPCR, Western blotting, and CCK8 assays. Furthermore, we verified the candidate sequence targeted by miR-30a using a luciferase reporter gene assay. We observed a significant decrease in the serum miR-30a levels in patients with LN. Also, in IgG-LN-treated podocytes, miR-30a decreased and Notch1 expression was elevated. Bioinformatic analysis and transfection experiments revealed that Notch1 is a direct target of miR-30a. Further supporting this finding, miR-30a upregulation appeared to alleviate IgG-LN-treated podocyte injury, and Notch1 overexpression reversed this effect. To conclude, miR-30a can ameliorate podocyte injury via suppression of the Notch1 signaling pathway.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , MicroRNAs , Podócitos , Humanos , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo
11.
Can J Physiol Pharmacol ; 100(2): 167-175, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35025607

RESUMO

Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.


Assuntos
Proliferação de Células/genética , Colágeno/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Expressão Gênica , MicroRNAs/genética , MicroRNAs/fisiologia , Animais , Modelos Animais de Doenças , Masculino , MicroRNAs/metabolismo , Miocárdio/citologia , Ratos Sprague-Dawley , Proteína Smad2/genética , Proteína Smad2/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 126-136, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130620

RESUMO

Abnormal elevation of homocysteine (Hcy) level is closely related to the development and progression of chronic kidney disease (CKD), with the molecular mechanisms that are not fully elucidated. Given the demonstration that miR-30a-5p is specifically expressed in glomerular podocytes, in the present study we aimed to investigate the role and potential underlying mechanism of miR-30a-5p in glomerular podocyte apoptosis induced by Hcy. We found that elevated Hcy downregulates miR-30a-5p expression in the mice and Hcy-treated podocytes, and miR-30a-5p directly targets the 3'-untranslated region (3'-UTR) of the forkhead box A1 (FOXA1) and overexpression of miR-30a-5p inhibits FOXA1 expression. By nMS-PCR and MassARRAY quantitative methylation analysis, we showed the increased DNA methylation level of miR-30a-5p promoter both and . Meanwhile, dual-luciferase reporter assay showed that the region between --1400 and --921 bp of miR-30a-5p promoter is a possible regulatory element for its transcription. Mechanistic studies indicated that DNA methyltransferase enzyme 1 (DNMT1) is the key regulator of miR-30a-5p, which in turn enhances miR-30a-5p promoter methylation level and thereby inhibits its expression. Taken together, our results revealed that epigenetic modification of miR-30a-5p is involved in glomerular podocyte injury induced by Hcy, providing a diagnostic marker candidate and novel therapeutic target in CKD induced by Hcy.


Assuntos
Hiper-Homocisteinemia , MicroRNAs , Podócitos , Animais , Apoptose/genética , Metilação de DNA , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo
13.
Br Poult Sci ; 63(4): 475-483, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35275038

RESUMO

1. Chicken muscle is an important factor in meat quality and its development is controlled by a complex regulatory network.2. The following study examined the expression of miR-30a-3p in Gushi chicken breast muscle tissue and found that it was differentially expressed at different embryonic stages, reaching a peak in the 14-day-old embryo (E14).3. The effect of miR-30a-3p on chicken primary myoblasts (CPMs) was explored. Results from both cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) showed that this can inhibit the proliferation of myoblasts, and through cell cycle experiments, the inhibition of myoblast proliferation was found, which may be due to G0/G1 arrest in the cell cycle.4. The effect of miR-30a-3p on the differentiation of myoblasts was studied. The results showed that miR-30a-3p can promote the expression of MYOD, myogenin (MYOG), and myosin heavy chain (MYHC) genes to promote the differentiation of myoblasts. Through MYHC protein immunofluorescence experiments, it was found that miR-30a-3p can effectively increase the area of myotubes.5. Finally, mRNA transcriptome data was analysed, which showed that miR-30a-3p has 51 potential target genes. Among them, forkhead box O3 (FOXO3), ankyrin repeat domain 1 (ANKRD1), and insulin-induced 1 (INSIG1) genes were differentially expressed at different developmental stages and were enriched in Gene Ontology (GO) terms, such as cell differentiation and cellular developmental process. The data showed that tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), and growth arrest and DNA damage-inducible 45 (GADD45) genes were enriched in the cell cycle pathway.6. It can be speculated that miR-30a-3p plays roles through these genes in myoblast development. This research provides information for further improving knowledge of the chicken muscle development regulation network.


Assuntos
Galinhas , MicroRNAs , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo
14.
J Cell Mol Med ; 25(14): 7013-7027, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34121323

RESUMO

Recent studies have demonstrated that one-carbon metabolism plays a significant role in cancer development. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme of one-carbon metabolism, has been reported to be dysregulated in many cancers. However, the specific role and mechanism of MTHFD2 in lung adenocarcinoma (LUAD) still remains unclear. In this study, we evaluated the clinicopathological and prognostic values of MTHFD2 in LUAD patients. We conducted a series of functional experiments in vivo and in vitro to explore novel mechanism of MTHFD2 in LUAD. The results showed that MTHFD2 was significantly up-regulated in LUAD tissues and predicted poor prognosis of LUAD patients. Knockdown of MTHFD2 dramatically inhibited cell proliferation and migration by blocking the cell cycle and inducing the epithelial-mesenchymal transition (EMT). In addition, MTHFD2 knockdown suppressed LUAD growth and metastasis in cell-derived xenografts. Mechanically, we found that MTHFD2 promoted LUAD cell growth and metastasis via AKT/GSK-3ß/ß-catenin signalling. Finally, we identified miR-30a-3p as a novel regulator of MTHFD2 in LUAD. Collectively, MTHFD2 plays an oncogenic role in LUAD progression and is a promising target for LUAD diagnosis and therapy.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Aminoidrolases/metabolismo , Carcinogênese/metabolismo , Neoplasias Pulmonares/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Enzimas Multifuncionais/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Aminoidrolases/genética , Animais , Carcinogênese/genética , Movimento Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Endogâmicos BALB C , Enzimas Multifuncionais/genética , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
15.
J Cell Mol Med ; 25(10): 4696-4708, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33787057

RESUMO

Small nucleolar RNA host gene 12 (SNHG12) has been indicated in the tumorigenesis of various human cancers, including clear cell renal cell carcinoma (ccRCC). However, the underlying mechanisms of SNHG12 driving progression of ccRCC remain incompletely understood. In the present study, we discovered that SNHG12 is up-regulated in ccRCC and that overexpression of SNHG12 predicted poor clinical outcome of ccRCC patients. SNHG12 knockdown notably inhibited proliferation and migration of RCC cells. Furthermore, we discovered that miR-30a-3p, a putative ccRCC inhibitor, was competitively sponged by SNHG12. Via the crosstalk network, SNHG12 was capable of up-regulating multiple target genes of miR-30a-3p, namely, RUNX2, WNT2 and IGF-1R, which have been identified to facilitate tumorigenesis of ccRCC. Taken together, our present study suggested a novel ceRNA network, in which SNHG12 could promote the malignancy of ccRCC although competitively binding with miR-30a-3p and consequently release the expression of its downstream cancer-related genes.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Movimento Celular , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt2/genética , Proteína Wnt2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Physiol ; 236(1): 536-548, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557622

RESUMO

Although the incidence and mortality of gastric cancer (GC) are slowly decreasing, the overall prognosis of GC patients with distal metastasis remains dismal. Long non-coding RNA PVT1 has been verified to function as a tumor promoter in several types of cancer. However, the role of PVT1 in GC metastasis remains obscure. Herein, we found that PVT1 was highly expressed in GC tissues and high PVT1 level was associated with tumor stage, lymph node metastasis, and poor prognosis. Overexpression of PVT1 significantly elevated epithelial-to-mesenchymal transition (EMT) marker (N-cadherin, ZEB1, and ZEB2) levels and promoted GC cell EMT process and tumor metastasis in vitro and in vivo. Mechanistically, Snail was identified as a direct target of miR-30a. PVT1 could bind with miR-30a and increase the expression of Snail by acting as a competing endogenous RNA, whereas re-expression of miR-30a in GC cells rescued the EMT markers, decreased Snail level, and inhibited GC cell migration. Taken together, these findings provide a new light on PVT1 in the pathogenesis and development of GC and an important implication for future therapy of the GC.


Assuntos
Movimento Celular/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Caderinas/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , MicroRNAs/genética , Prognóstico , Neoplasias Gástricas/patologia
17.
Mol Cancer ; 20(1): 139, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702297

RESUMO

BACKGROUND: Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and have been confirmed to be critical in tumorigenesis and to be potential biomarkers or therapeutic targets. However, only a few circRNAs have been functionally characterized in pediatric acute myeloid leukemia (AML). METHODS: Here, we investigated the expression pattern of circRNAs in pediatric AML using a circRNA microarray. The characteristics, potential diagnostic value, and prognostic significance of circRNF220 were evaluated. A series of functional experiments were performed to investigate the role of circRNF220 in primary pediatric AML cells. Then we investigated the aberrant transcriptional networks regulated by circRNF220 in primary AML cells by RNA-seq. Furthermore, biotin RNA pulldown assays were implemented to verify the relationship between circRNF220 and miR-30a. RESULTS: We identified a circRNA, circRNF220, which was specifically abundant in and accumulated in the peripheral blood and bone marrow of pediatric patients with AML. It could distinguish AML from ALL and other hematological malignancies with high sensitivity and specificity. Significantly, circRNF220 expression independently predicted prognosis, while high expression of circRNF220 was an unfavorable prognostic marker for relapse. Furthermore, we characterized the function of circRNF220 and found that circRNF220 knockdown specifically inhibited proliferation and promoted apoptosis in AML cell lines and primary cells. Mechanistically, circRNF220 may act as an endogenous sponge of miR-30a to sequester miR-30a and inhibit its activity, which increases the expression of its targets MYSM1 and IER2 and implicated in AML relapse. CONCLUSIONS: Collectively, these findings demonstrated that circRNF220 could be highly efficient and specific for the accurate diagnosis of pediatric AML, with implications for relapse prediction.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Fatores Etários , Apoptose/genética , Estudos de Casos e Controles , Ciclo Celular/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lactente , Masculino , Modelos Biológicos , Prognóstico , Curva ROC , Recidiva
18.
Biochem Biophys Res Commun ; 557: 90-96, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862465

RESUMO

Klotho deficiency was observed in virtually all kinds of kidney disease and is thought to play a critical role in podocyte injury. However, the underline mechanisms involved in podocyte injury remain unknown. miRNAs have diverse regulatory roles, and miR-30 family members were essential for podocyte homeostasis. Our study revealed that Klotho and miR-30s were downregulated in PAN-treated podocytes. The ectopic expression of Klotho ameliorates PAN induced podocyte apoptosis through upregulating miR-30a and downregulating Ppp3ca, Ppp3cb, Ppp3r1, and Nfact3 expression, which are the known targets of miR-30s. We also found that Klotho regulates TRPC6 via miR-30a to activate calcium/calcineurin signaling. Further, glucocorticoid (Dexamethasone, DEX) was found to sustain Klotho and miR-30a levels during PAN treatment in vitro. Eventually, in rats, PAN treatment substantially downregulated Klotho and miR-30a levels, lead to podocyte injury and increased proteinuria. The transfer of exogenous Klotho to podocytes of PAN-treated rats could increase miR-30a expression, reduce TRPC6 expression, and also ameliorated podocyte injury and proteinuria. In conclusion, Klotho, acting on miR-30s, which directly regulates its target genes, contributes to podocyte apoptosis induced by PAN. It is a novel mechanism underlying PAN-induced podocyte injury.


Assuntos
Glucuronidase/metabolismo , Nefropatias/metabolismo , MicroRNAs/metabolismo , Podócitos/metabolismo , Canal de Cátion TRPC6/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Dexametasona/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Nefropatias/genética , Nefropatias/patologia , Proteínas Klotho , Masculino , MicroRNAs/genética , Podócitos/efeitos dos fármacos , Podócitos/patologia , Puromicina Aminonucleosídeo/farmacologia , Ratos , Ratos Wistar
19.
Biochem Biophys Res Commun ; 577: 95-102, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34509725

RESUMO

OBJECTIVE: Long non-coding RNAs (lncRNAs) are implicated in cancer-related cellular behaviors. Our research aimed to explore the biological functions of lncRNA AL592284.1 (AL592284.1) in cervical cancer (CC). METHODS: qRT-PCR was performed to examine AL592284.1 expressions in cell lines and tumor specimens. To study the roles of AL592284.1 on malignant behaviors in both in vitro and in vivo, Loss-of-function assays were carried out. Besides, bioinformatics prediction and dual-luciferase reporter assays were performed to reveal the interaction among AL592284.1 and its target genes. The functions of the AL592284.1/miR-30a-5p/Vimentin axis in CC cells was clarified by rescue assays. RESULTS: We observed that the levels of AL592284.1 in CC were distinctly increased. Functional assays revealed that knockdown of AL592284.1 suppressed the proliferation, migration, invasion and EMT progress of CC cells. Luciferase reporter assay confirmed that miR-30a-5p/Vimentin regulatory axis is the direct downstream of AL592284.1. Rescue experiments indicated that AL592284.1 induced overexpression of Vimentin via sponging miR-30a-5p, resulting in the promotion of CC progression. CONCLUSION: The present study proves that AL592284.1 plays an tumor-promotive role in CC via regulating the miR-30a-5p/Vimentin axis, and inhibition of AL592284.1 may pave the way for CC treatment.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte de Cátions Orgânicos/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Vimentina/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Vimentina/metabolismo
20.
Cell Tissue Res ; 383(2): 795-807, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151455

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are considered to be seed cells in bone tissue engineering and emerging evidence indicates that circular RNAs (circRNAs) function in the osteogenic differentiation of ADSCs. The mechanisms of osteoblastic differentiation of ADSCs from the perspective of circRNA modulation are examined in this study. First, circRNA-23525 was upregulated during osteoblastic differentiation of ADSCs. Second, overexpression of circRNA-23525 increased Runx2, ALP and OCN at both mRNA and protein levels. Alkaline phosphatase (ALP) and Alizarin Red staining indicated a similar tendency. Silencing circRNA-23525 produced the opposite effect. Bioinformatics analysis with luciferase assays confirmed that circRNA-23525 functioned as a sponge for miR-30a-3p. In the osteoblastic differentiation of ADSCs, the dynamic expression of miR-30a-3p and circRNA-23525 resulted in an opposite trend at 3, 7 and 14 days. Overexpression of circRNA-23525 downregulated miR-30a-3p and knockdown of circRNA-23525 promoted the expression of miR-30a-3p. Bioinformatics methods and luciferase assays suggested that miR-30a-3p modulated Runx2 expression by targeting 3'UTR. Knockdown of miR-30a-3p facilitated osteogenesis in ADSCs and enhancing miR-30a-3p interfered with the osteogenic process. Finally, circRNA-23525 overexpression significantly increased Runx2 expression, while co-transfection of miR-30a-3p mimics reversed it. Runx2 expression was decreased in circRNA-23525-knockdown ADSCs but expression was rescued by including the miR-30a-3p inhibitor in the osteoblastic process. ALP activity and mineralized bone matrix confirmed the function of circRNA-23525/miR-30a-3p in osteogenesis. Taken together, the current study demonstrated that circRNA-23525 regulates Runx2 expression via targeting miR-30a-3p and is thus a positive regulator in the osteoblastic differentiation of ADSCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , RNA Circular/metabolismo , Animais , Sequência de Bases , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , RNA Circular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA