Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Primatol ; : e23621, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528343

RESUMO

Edge effects result from the penetration to varying depths and intensities, of abiotic and biotic conditions from the surrounding non-forest matrix into the forest interior. Although 70% of the world's forests are within 1 km of a forest edge, making edge effects a dominant feature of most forest habitats, there are few empirical data on inter-site differences in edge responses in primates. We used spatially explicit capture-recapture (SECR) models to determine spatial patterns of density for two species of mouse lemurs (Microcebus murinus and Microcebus ravelobensis) in two forest landscapes in northwestern Madagascar. The goal of our study was to determine if mouse lemurs displayed spatially variable responses to edge effects. We trapped animals using Sherman live traps in the Mariarano Classified Forest (MCF) and in the Ambanjabe Forest Fragment Site (AFFS) site within Ankarafantsika National Park. We trapped 126 M. murinus and 79 M. ravelobensis at MCF and 78 M. murinus and 308 M. ravelobensis at AFFS. For M. murinus, our top model predicted a positive edge response, where density increased towards edge habitats. In M. ravelobensis, our top model predicted a negative edge response, where density was lower near the forest edges and increased towards the forest interior. At regional and landscape-specific scales, SECR models estimated different density patterns between M. murinus and M. ravelobensis as a result of variation in edge distance. The spatial variability of our results using SECR models indicate the importance of studying the population ecology of primates at varying scales that are appropriate to the processes of interest. Our results lend further support to the theory that some lemurs exhibit a form of ecological flexibility in their responses to forest loss, forest fragmentation, and associated edge effects.

2.
J Therm Biol ; 121: 103829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569326

RESUMO

The physiological mechanisms of responses to stressors are at the core of ecophysiological studies that examine the limits of an organism's flexibility. Interindividual variability in these physiological responses can be particularly important and lead to differences in the stress response among population groups, which can affect population dynamics. Some observations of intersexual differences in heterothermy raise the question of whether there is a difference in energy management between the sexes. In this study, we assessed male and female differences in mouse lemurs (Microcebus murinus), a highly seasonal malagasy primate, by measuring their physiological flexibility in response to caloric restriction and examining the subsequent impact on reproductive success. Using complementary methods aiming to describe large-scale and daily variations in body temperature throughout a 6-month winter-like short-day (SD) period, we monitored 12 males and 12 females, applying chronic 40% caloric restriction (CR) to 6 individuals in each group. We found variations in Tb modulation throughout the SD period and in response to caloric treatment that depended on sex, as females, regardless of food restriction, and CR males, only, entered deep torpor. The use of deeper torpor, however, did not translate into a lower loss of body mass in females and did not affect reproductive success. Captive conditions may have buffered the depth of torpor and minimised the positive effects of torpor on energy savings. However, the significant sex differences in heterothermy we observed may point to physiological benefits other than preservation of energy reserves.


Assuntos
Restrição Calórica , Cheirogaleidae , Metabolismo Energético , Estações do Ano , Animais , Feminino , Masculino , Cheirogaleidae/fisiologia , Torpor/fisiologia , Caracteres Sexuais , Temperatura Corporal , Reprodução , Regulação da Temperatura Corporal
3.
Brain Behav Immun ; 109: 63-77, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592872

RESUMO

Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-ß (Aß) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aß derivative, K6Aß1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aß were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aß that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aß clearance. This Aß derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.


Assuntos
Doença de Alzheimer , Cheirogaleidae , Vacinas , Animais , Filogenia , Peptídeos beta-Amiloides , Imunização , Doença de Alzheimer/patologia , Vacinação , Modelos Animais de Doenças
4.
Am J Primatol ; 85(2): e23458, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504317

RESUMO

The relevance of emerging infectious diseases continues to grow worldwide as human activities increasingly extend into formerly remote natural areas. This is particularly noticeable on the island of Madagascar. As closest relatives to humans on the island, lemurs are of particular relevance as a potential origin of zoonotic pathogen spillover. Knowledge of pathogens circulating in lemur populations is, however, very poor. Particularly little is known about lemur hemoparasites. To infer host range, ecological and geographic spread of the recently described hemoparasitic nematode Lemurfilaria lemuris in northwestern Madagascar, a total of 942 individuals of two mouse lemur species (Microcebus murinus [n = 207] and Microcebus ravelobensis [n = 433]) and two rodent species (the endemic Eliurus myoxinus [n = 118] and the invasive Rattus rattus [n = 184]) were captured in two fragmented forest landscapes (Ankarafantsika National Park and Mariarano Classified Forest) in northwestern Madagascar for blood sample examination. No protozoan hemoparasites were detected by microscopic blood smear screening. Microfilaria were present in 1.0% (2/207) of M. murinus and 2.1% (9/433) of M. ravelobensis blood samples but not in rodent samples. Internal transcribed spacer 1 (ITS-1) sequences were identical to an unnamed Onchocercidae species previously described to infect a larger lemur species, Propithecus verreauxi, about 650 km further south. In contrast to expectations, L. lemuris was not detected. The finding of a pathogen in a distantly related host species, at a considerable geographic distance from the location of its original detection, instead of a microfilaria species previously described for one of the studied host species in the same region, illustrates our low level of knowledge of lemur hemoparasites, their host ranges, distribution, modes of transmission, and their zoonotic potential. Our findings shall stimulate new research that will be of relevance for both conservation medicine and human epidemiology.


Assuntos
Cheirogaleidae , Lemur , Lemuridae , Strepsirhini , Ratos , Animais , Humanos , Especificidade de Hospedeiro , Roedores , Madagáscar , Especificidade da Espécie
5.
Am J Primatol ; 85(6): e23494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078629

RESUMO

Parasite infestations depend on multiple host-related and environmental factors. In the case of ectoparasites, which are exposed to the environment beyond the host, an impact of climate, expressed by seasonal or yearly variations, can be expected. However, long-term dynamics of ectoparasite infestations are rarely studied in nonhuman primates. We investigated the yearly variations in ectoparasite infestations of two small primates, the gray (Microcebus murinus) and the golden-brown (Microcebus ravelobensis) mouse lemur. For a more comprehensive evaluation, we also analyzed the potential effects of yearly and monthly climatic variation (temperature, rainfall) in addition to habitat, host sex, age, species, and body mass, on ectoparasite infestation. Individuals of both host species were sampled in two study sites within the Ankarafantsika National Park in northwestern Madagascar during several months (March-November) and across 4 years (2010, 2011, 2015, 2016). Our results show significant monthly and yearly variations in the infestation rates of three native ectoparasite taxa (Haemaphysalis spp. ticks, Schoutedenichia microcebi chigger mites, Lemurpediculus spp. sucking lice) and in ectoparasite species richness in both mouse lemur species. In addition, significant impacts of several host-related (species, sex, body mass) and environmental factors (habitat, temperature, rainfall) were found, but with differences in relevance for the different parasite taxa and partly deviating in their direction. Although some differences could be attributed to either permanent or temporary presence of the parasites on the host or to ecological differences between the host species, the lack of specific knowledge regarding the life cycle and microhabitat requirements of each parasite taxon precludes a complete understanding of the factors that determine their infestation dynamics. This study demonstrates the presence of yearly and monthly dynamics in lemur-parasite interactions in tropical, seasonal, dry deciduous forests in Madagascar, which call out for broad ecological long-term studies focusing both on primate hosts and their parasites.


Assuntos
Cheirogaleidae , Animais , Madagáscar , Estações do Ano , Ecossistema , Florestas
6.
Mol Ecol ; 31(19): 4901-4918, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880414

RESUMO

Madagascar's Central Highlands are largely composed of grasslands, interspersed with patches of forest. The historical perspective was that Madagascar's grasslands had anthropogenic origins, but emerging evidence suggests that grasslands were a component of the pre-human Central Highlands vegetation. Consequently, there is now vigorous debate regarding the extent to which these grasslands have expanded due to anthropogenic pressures. Here, we shed light on the temporal dynamics of Madagascar's vegetative composition by conducting a population genomic investigation of Goodman's mouse lemur (Microcebus lehilahytsara; Cheirogaleidae). These small-bodied primates occur both in Madagascar's eastern rainforests and in the Central Highlands, making them a valuable indicator species. Population divergences among forest-dwelling mammals will reflect changes to their habitat, including fragmentation, whereas patterns of post-divergence gene flow can reveal formerly wooded migration corridors. To explore these patterns, we used RADseq data to infer population genetic structure, demographic models of post-divergence gene flow, and population size change through time. The results offer evidence that open habitats are an ancient component of the Central Highlands, and that widespread forest fragmentation occurred naturally during a period of decreased precipitation near the last glacial maximum. Models of gene flow suggest that migration across the Central Highlands has been possible from the Pleistocene through the recent Holocene via riparian corridors. Though our findings support the hypothesis that Central Highland grasslands predate human arrival, we also find evidence for human-mediated population declines. This highlights the extent to which species imminently threatened by human-mediated deforestation may already be vulnerable from paleoclimatic conditions.


Assuntos
Cheirogaleidae , Lemur , Animais , Cheirogaleidae/genética , Humanos , Madagáscar , Metagenômica , Floresta Úmida
7.
Neuroimage ; 226: 117589, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248260

RESUMO

Measures of resting-state functional connectivity allow the description of neuronal networks in humans and provide a window on brain function in normal and pathological conditions. Characterizing neuronal networks in animals is complementary to studies in humans to understand how evolution has modelled network architecture. The mouse lemur (Microcebus murinus) is one of the smallest and more phylogenetically distant primates as compared to humans. Characterizing the functional organization of its brain is critical for scientists studying this primate as well as to add a link for comparative animal studies. Here, we created the first functional atlas of mouse lemur brain and describe for the first time its cerebral networks. They were classified as two primary cortical networks (somato-motor and visual), two high-level cortical networks (fronto-parietal and fronto-temporal) and two limbic networks (sensory-limbic and evaluative-limbic). Comparison of mouse lemur and human networks revealed similarities between mouse lemur high-level cortical networks and human networks as the dorsal attentional (DAN), executive control (ECN), and default-mode networks (DMN). These networks were however not homologous, possibly reflecting differential organization of high-level networks. Finally, cerebral hubs were evaluated. They were grouped along an antero-posterior axis in lemurs while they were split into parietal and frontal clusters in humans.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Cheirogaleidae , Rede de Modo Padrão/diagnóstico por imagem , Adulto , Animais , Atenção/fisiologia , Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso
8.
Am J Primatol ; 83(11): e23337, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34706117

RESUMO

Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.


Assuntos
Cheirogaleidae , Disfunção Cognitiva , Envelhecimento , Animais , Cognição , Fatores de Risco
9.
J Hum Evol ; 142: 102732, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172006

RESUMO

The environment of juvenile primates is very challenging. They have to forage and move on the same substrates as adults do and escape the same predators, despite their immature state. In this study, we explore the developmental strategies that may provide effective locomotor abilities early in life. This could provide new insights into the selective pressures acting on juvenile primates and into evolution of primate locomotion. We conducted an ontogenetic study of 36 arboreal gray mouse lemurs from birth to adulthood (6 months of age). The investigated parameters were, for both limbs, (1) grasping behavior during locomotion (i.e., grip postures), (2) grasping performance (i.e., pull strength), and (3) motor coordination (i.e., rotarod test). Our results show that 8-day-old babies are able to climb substrates of various slopes and diameters outside of their nest. Although juveniles cannot successfully complete a motor coordination test before 30 days of age, young individuals display relative pull strengths that are very high or even on par with adults, guaranteeing stability on narrow substrates. These powerful grasps highlight the importance of the grasping function for these juveniles that are not carried and move independently on arboreal substrates shortly after their first week of life. Moreover, the pedal grasping provides a secure grasp on all substrates across ontogeny; however, manual secure grasps decrease during development, being highly used only shortly after birth on vertical and narrow substrates. These results first suggest different functional roles of the hands and feet, with the hind limbs ensuring body balance on the substrates, freeing the upper limbs for manipulation. They further show vertical and narrow branches to be especially challenging, requiring strong grasps, which suggests that they may drive the evolution of strong grasping abilities in primates.


Assuntos
Cheirogaleidae/fisiologia , Força da Mão , Locomoção , Teste de Desempenho do Rota-Rod/veterinária , Animais , Animais de Zoológico/crescimento & desenvolvimento , Animais de Zoológico/fisiologia , Cheirogaleidae/crescimento & desenvolvimento , Feminino , Camundongos
10.
BMC Ecol ; 20(1): 69, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334336

RESUMO

BACKGROUND: Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge. We installed 16 pairs of 20 m2 vegetation plots along each transect and measured nine vegetation parameters. To determine the responses of the vegetation and animals to an increasing distance to the edge, we tested the fit of four alternative mathematical functions (linear, power, logistic and unimodal) to the data and derived the depth of edge influence (DEI) for all parameters. RESULTS: Logistic and unimodal functions best explained edge responses of vegetation parameters, and the logistic function performed best for abundance and body mass of M. ravelobensis. The DEI varied between 50 m (no. of seedlings, no. of liana, dbh of large trees [dbh ≥ 10 cm]) and 460 m (tree height of large trees) for the vegetation parameters, whereas it was 340 m for M. ravelobensis abundance and 390 m for body mass, corresponding best to the DEI of small tree [dbh < 10 cm] density (360 m). Small trees were significantly taller and the density of seedlings was higher in the interior than in the edge habitat. However, there was no significant difference in M. ravelobensis abundance and body mass between interior and edge habitats, suggesting that M. ravelobensis did not show a strong edge response in the study region. Finally, regression analyses revealed three negative (species abundance and three vegetation parameters) and two positive relationships (body mass and two vegetation parameters), suggesting an impact of vegetation structure on M. ravelobensis which may be partly independent of edge effects. CONCLUSIONS: A comparison of our results with previous findings reveals that edge effects are variable in space in a small nocturnal primate from Madagascar. Such an ecological plasticity could be extremely relevant for mitigating species responses to habitat loss and anthropogenic disturbances.


Assuntos
Cheirogaleidae , Animais , Ecossistema , Florestas , Madagáscar , Camundongos , Árvores
11.
Am J Primatol ; 82(4): e23059, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608491

RESUMO

Habitat loss and fragmentation are major ecological forces threatening animal communities across the globe. These issues are especially true in Madagascar, where forest loss is ongoing. We examined the effects of forest fragmentation on the distribution and abundance of sympatric, endemic gray, and golden-brown mouse lemurs (Microcebus murinus and Microcebus ravelobensis), the endemic western tuft-tailed rat (Eliurus myoxinus), and the invasive black rat (Rattus rattus) in two regions in northwestern Madagascar. We used systematic capture procedures in 40 forest fragments and four continuous forest sites which differed in size, shape, and degree of isolation. With a trapping effort of 11,567 trap nights during two dry seasons (2017-2018), we captured 929 individuals (432 M. ravelobensis, 196 M. murinus, 116 E. myoxinus, and 185 R. rattus). We examined the influence of study region, forest type (fragment vs. continuous), forest size, forest shape, the proportion of 50-m forest edge and distance to continuous forest on the abundance and interaction of the four species. Responses to fragmentation differed strongly between species, but no interaction could be detected between the abundance of the different species. Thus competition within and between native and invasive species may not be regulating abundances in these regions. On the contrary, the abundance of M. ravelobensis and E. myoxinus differed significantly between study regions and was negatively affected by fragmentation. In contrast, there was no evidence of an impact of fragmentation on the abundance of M. murinus. Finally, the invasive R. rattus responded positively to the increasing distance to the continuous forest. In conclusion, the response of small Malagasy mammals to forest fragmentation varies largely between species, and fragmentation effects need to be examined at a species-specific level to fully understand their ecological dynamics and complexity.


Assuntos
Cheirogaleidae , Ecossistema , Roedores , Animais , Florestas , Espécies Introduzidas , Madagáscar , Ratos
12.
BMC Ecol ; 19(1): 20, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101046

RESUMO

BACKGROUND: Social tolerance strongly influences the patterns of affiliation and aggression in animal societies. However, not much is known about the variation of social tolerance in species living in dispersed social systems that combine solitary foraging activities with the need of coordinating social interactions with conspecifics on a regular basis. This study aims to investigate the sources of variation in social tolerance within a Malagasy primate radiation with dispersed social systems, the mouse lemurs (Microcebus spp.). Six mouse lemur species were selected as model species that belong to three different taxonomic clades, live in two types of forest environments (dry and humid), and differed in this study with respect to their reproductive activity. Six male-female and six male-male dyads of each species were tested temporarily in a standardized social encounter paradigm in Madagascar to collect data on joint use of space, non-agonistic body contacts, aggression rates, the number of conflicts and the establishment of intra- and intersexual dominance. RESULTS: Male-female dyads of the six species differed significantly in the frequency of affiliative and agonistic behaviors. In contrast, the variations between male-male dyads could not be explained by one parameter only, but clade membership, forest type, reproductive state as well as species were all suggested to be partially influential. Only one species (Microcebus mamiratra) showed signals of unambiguous female dominance in all male-female dyads, whereas the others had no or only a few dyads with female dominance. CONCLUSIONS: Variations in social tolerance and its consequences are most likely influenced by two factors, ecology (via forest type) and physiology (via reproductive activity), and only to a lesser extent by clade membership. The study suggests that mouse lemur females have higher aggression rates and more agonistic conflicts with males when females in the population are reproducing, at least in resource-rich humid forests. The study confirms a high degree of social plasticity between species in these small solitary foragers that supports their taxonomic distinctiveness and requires further scientific attention.


Assuntos
Cheirogaleidae , Animais , Feminino , Madagáscar , Masculino , Camundongos , Reprodução
13.
Am J Primatol ; 81(12): e23062, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631370

RESUMO

The generation time of organisms drives the rate of change in populations and across evolutionary times. In long-lived species, generation time should also account for overlapping generations, and the average age of parents has been proposed as a best approximation under these conditions. This study uses this definition to estimate the generation time of a widely studied small primate, Microcebus murinus, based on parentage data generated for a free-living population over a 6-year period in northwestern Madagascar. The average age of parents was calculated separately for mothers and fathers of three different offspring cohorts that differed in the degree of demographic uncertainty. In addition, adult survival rates were calculated for males and females based on long-term capture data from the same population to estimate the possible upper limits of generation time. Adult survival was low with only 44% of adult females and 38% of adult males being recaptured at the beginning of their second breeding season. The average age of mothers was 1.56-1.91 years, pointing toward a 2-year female generation time due to the high proportion of 1-year old mothers in all three cohorts. Female generation time estimates were fairly stable across the three offspring cohorts. In contrast, the average age of fathers differed by more than 1 year from the first to the third offspring cohort (1.71-2.83 years) pointing toward a 3-year generation time, but also suggesting a higher degree of demographic uncertainty in the early years of the study. For future modeling purposes, we, therefore, propose to use the average, 2.5 years, of male and female values as new estimate for the generation time of mouse lemurs.


Assuntos
Cheirogaleidae , Reprodução , Animais , Demografia , Feminino , Madagáscar , Masculino , Dinâmica Populacional , Estações do Ano
14.
J Anim Ecol ; 87(2): 438-447, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28555881

RESUMO

Detecting interaction between species is notoriously difficult, and disentangling species associations in host-related gut communities is especially challenging. Nevertheless, due to contemporary methods, including metabarcoding and 16S sequencing, collecting observational data on community composition has become easier and much more common. We studied the previously collected datasets of intestinal bacterial microbiota and parasite compositions within longitudinally followed mouse lemurs by analysing the potential interactions with diversity metrics and novel joint species distribution modelling. Both methods showed statistical association between certain parasite species and bacterial microbiota composition. Unicellular Eimeria sp. had an effect on diversity of gut microbiota. The cestode Hymenolepis diminuta had negative associations with several bacterial orders, whereas closely related species Hymenolepis nana had positive associations with several bacterial orders. Our results reveal potential interactions between some, but not all, intestinal parasites and gut bacterial microbiota. Host variables contributed over half of the total variation explained with the model, and sex was the most important single host variable; especially with microbiota, there were sex-related differences in the community composition. This study shows how joint species distribution modelling can incorporate both within-host dynamics of several taxa and host characteristics to model potential interactions in intestinal community. These results provide new hypothesis for interactions between and among parasites and bacterial microbiota to be tested further with experimental studies.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Interações entre Hospedeiro e Microrganismos , Lemur/microbiologia , Lemur/parasitologia , Animais , Animais Selvagens , Feminino , Masculino , Fatores Sexuais
15.
Evol Anthropol ; 27(4): 147-161, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30015414

RESUMO

Living nonhuman primates generally inhabit tropical forests, and torpor is regarded as a strategy employed by cold-adapted organisms. Yet, some primates employ daily torpor or hibernation (heterothermy) under obligatory, temporary, or emergency circumstances. Though heterothermy is present in most mammalian lineages, there are only three extant heterothermic primate lineages: bushbabies from Africa, lorises from Asia, and dwarf and mouse lemurs from Madagascar. Here, we analyze their phenotypes in the general context of tropical mammalian heterothermy. We focus on Malagasy lemurs as they have been the most intensively studied and also show an unmatched range of flexibility in their heterothermic responses. We discuss the evidence for whether heterothermy should be considered an ancestral or derived condition in primates. This consideration is particularly intriguing given that an understanding of the underlying mechanisms for hibernation in lemurs opens the possibility for insight into genotype-phenotype interactions, including those with biomedical relevance for humans.


Assuntos
Hibernação/fisiologia , Lemur/fisiologia , Lorisidae/fisiologia , África , Animais , Ásia , Feminino , Madagáscar , Masculino , Torpor/fisiologia
16.
BMC Evol Biol ; 17(1): 28, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109265

RESUMO

BACKGROUND: A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. RESULTS: M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. CONCLUSIONS: These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic.


Assuntos
Adaptação Biológica , Cheirogaleidae/genética , Variação Genética , Filogenia , Seleção Genética , Animais , Evolução Biológica , Ecossistema , Feminino , Madagáscar , Masculino , Camundongos , Análise de Sequência de DNA , Simpatria
17.
J Evol Biol ; 30(1): 128-140, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27790777

RESUMO

Inbreeding depression may be common in nature, reflecting either the failure of inbreeding avoidance strategies or inbreeding tolerance when avoidance is costly. The combined assessment of inbreeding risk, avoidance and depression is therefore fundamental to evaluate the inbreeding strategy of a population, that is how individuals respond to the risk of inbreeding. Here, we use the demographic and genetic monitoring of 10 generations of wild grey mouse lemurs (Microcebus murinus), small primates from Madagascar with overlapping generations, to examine their inbreeding strategy. Grey mouse lemurs have retained ancestral mammalian traits, including solitary lifestyle, polygynandry and male-biased dispersal, and may therefore offer a representative example of the inbreeding strategy of solitary mammals. The occurrence of close kin among candidate mates was frequent in young females (~37%, most often the father) and uncommon in young males (~6%) due to male-biased dispersal. However, close kin consistently represented a tiny fraction of candidate mates (< 1%) across age and sex categories. Mating biases favouring partners with intermediate relatedness were detectable in yearling females and adult males, possibly partly caused by avoidance of daughter-father matings. Finally, inbreeding depression, assessed as the effect of heterozygosity on survival, was undetectable using a capture-mark-recapture study. Overall, these results indicate that sex-biased dispersal is a primary inbreeding avoidance mechanism at the population level, and mating biases represent an additional strategy that may mitigate residual inbreeding costs at the individual level. Combined, these mechanisms explain the rarity of inbreeding and the lack of detectable inbreeding depression in this large, genetically diverse population.


Assuntos
Cheirogaleidae/genética , Variação Genética , Endogamia , Animais , Feminino , Madagáscar , Masculino , Reprodução , Comportamento Sexual Animal
18.
BMC Ecol ; 17(1): 30, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859635

RESUMO

BACKGROUND: Glucocorticoid hormones are known to play a key role in mediating a cascade of physiological responses to social and ecological stressors and can therefore influence animals' behaviour and ultimately fitness. Yet, how glucocorticoid levels are associated with reproductive success or survival in a natural setting has received little empirical attention so far. Here, we examined links between survival and levels of glucocorticoid in a small, short-lived primate, the grey mouse lemur (Microcebus murinus), using for the first time an indicator of long-term stress load (hair cortisol concentration). Using a capture-mark-recapture modelling approach, we assessed the effect of stress on survival in a broad context (semi-annual rates), but also under a specific period of high energetic demands during the reproductive season. We further assessed the power of other commonly used health indicators (body condition and parasitism) in predicting survival outcomes relative to the effect of long-term stress. RESULTS: We found that high levels of hair cortisol were associated with reduced survival probabilities both at the semi-annual scale and over the reproductive season. Additionally, very good body condition (measured as scaled mass index) was related to increased survival at the semi-annual scale, but not during the breeding season. In contrast, variation in parasitism failed to predict survival. CONCLUSION: Altogether, our results indicate that long-term increased glucocorticoid levels can be related to survival and hence population dynamics, and suggest differential strength of selection acting on glucocorticoids, body condition, and parasite infection.


Assuntos
Animais Selvagens/metabolismo , Cheirogaleidae/fisiologia , Cabelo/química , Hidrocortisona/análise , Animais , Fezes/química , Feminino , Cabelo/metabolismo , Hidrocortisona/metabolismo , Masculino , Dinâmica Populacional , Reprodução , Estações do Ano , Comportamento Sexual Animal
19.
Vet Ophthalmol ; 20(2): 177-180, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27030164

RESUMO

Bilateral multifocal corneal opacity was detected in a 4.5-year-old male captive gray mouse lemur (Microcebus murinus) without other clinical ocular changes. Histopathological examination revealed a severe diffuse granulomatous scleritis and focal keratitis with intralesional cholesterol, consistent with xanthomatous inflammation. This is the first report of xanthomatous inflammation in a gray mouse lemur. This condition may be the result of systemic factors (lipid metabolism disorders) and/or local predisposing factors such as hemorrhage or inflammation. The pathogenesis in this case could not be fully determined. Further studies on lemurs are required for a better understanding of their lipid metabolism, as well as for diagnosing and evaluating the incidence of xanthomatous inflammation in these species.


Assuntos
Cheirogaleidae , Ceratite/veterinária , Esclerite/veterinária , Xantomatose/veterinária , Animais , Ceratite/patologia , Masculino , Esclerite/patologia , Xantomatose/patologia
20.
Mol Ecol ; 25(9): 2029-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26946180

RESUMO

Implementation of the coalescent model in a Bayesian framework is an emerging strength in genetically based species delimitation studies. By providing an objective measure of species diagnosis, these methods represent a quantitative enhancement to the analysis of multilocus data, and complement more traditional methods based on phenotypic and ecological characteristics. Recognized as two species 20 years ago, mouse lemurs (genus Microcebus) now comprise more than 20 species, largely diagnosed from mtDNA sequence data. With each new species description, enthusiasm has been tempered with scientific scepticism. Here, we present a statistically justified and unbiased Bayesian approach towards mouse lemur species delimitation. We perform validation tests using multilocus sequence data and two methodologies: (i) reverse-jump Markov chain Monte Carlo sampling to assess the likelihood of different models defined a priori by a guide tree, and (ii) a Bayes factor delimitation test that compares different species-tree models without a guide tree. We assess the sensitivity of these methods using randomized individual assignments, which has been used in bpp studies, but not with Bayes factor delimitation tests. Our results validate previously diagnosed taxa, as well as new species hypotheses, resulting in support for three new mouse lemur species. As the challenge of multiple researchers using differing criteria to describe diversity is not unique to Microcebus, the methods used here have significant potential for clarifying diversity in other taxonomic groups. We echo previous studies in advocating that multiple lines of evidence, including use of the coalescent model, should be trusted to delimit new species.


Assuntos
Cheirogaleidae/classificação , Especiação Genética , Modelos Genéticos , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Madagáscar , Cadeias de Markov , Método de Monte Carlo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA