Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 215(Pt 1): 113986, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058271

RESUMO

In Spain the average temperature has increased by 1.7 °C since pre-industrial times. There has been an increase in heat waves both in terms of frequency and intensity, with a clear impact in terms of population health. The effect of heat waves on daily mortality presents important territorial differences. Gender also affects these impacts, as a determinant that conditions social inequalities in health. There is evidence that women may be more susceptible to extreme heat than men, although there are relatively few studies that analyze differences in the vulnerability and adaptation to heat by sex. This could be related to physiological causes. On the other hand, one of the indicators used to measure vulnerability to heat in a population and its adaptation is the minimum mortality temperature (MMT) and its temporal evolution. The aim of this study was to analyze the values of MMT in men and women and its temporal evolution during the 1983-2018 period in Spain's provinces. An ecological, longitudinal retrospective study was carried out of time series data, based on maximum daily temperature and daily mortality data corresponding to the study period. Using cubic and quadratic fits between daily mortality rates and the temperature, the minimum values of these functions were determined, which allowed for determining MMT values. Furthermore, we used an improved methodology that provided for the estimation of missing MMT values when polynomial fits were inexistent. This analysis was carried out for each year. Later, based on the annual values of MMT, a linear fit was carried out to determine the rate of evolution of MMT for men and for women at the province level. Average MMT for all of Spain's provinces was 29.4 °C in the case of men and 28.7 °C in the case of women. The MMT for men was greater than that of women in 86 percent of the total provinces analyzed, which indicates greater vulnerability among women. In terms of the rate of variation in MMT during the period analyzed, that of men was 0.39 °C/decade, compared to 0.53 °C/decade for women, indicating greater adaptation to heat among women, compared to men. The differences found between men and women were statistically significant. At the province level, the results show great heterogeneity. Studies carried out at the local level are needed to provide knowledge about those factors that can explain these differences at the province level, and to allow for incorporating a gender perspective in the implementation of measures for adaptation to high temperatures.


Assuntos
Temperatura Alta , Mortalidade , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fatores Sexuais , Espanha/epidemiologia
2.
Environ Res ; 209: 112784, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35090871

RESUMO

The European Union is currently immersed in policy development to address the effects of climate change around the world. Key plans and processes for facilitating adaptation to high temperatures and for reducing the adverse effects on health are among the most urgent measures. Therefore, it is necessary to understand those factors that influence adaptation. The aim of this study was to provide knowledge related to the social, climate and economic factors that are related to the evolution of minimum mortality temperatures (MMT) in Spain in the rural and urban contexts, during the 1983-2018 time period. For this purpose, local factors were studied regarding their relationship to levels of adaptation to heat. MMT is an indicator that allows for establishing a relationship to between mortality and temperature, and is a valid indicator to assess the capacity of adaptation to heat of a certain population. MMT is obtained through the maximum daily temperature and daily mortality of the study period. The evolution of MMT values for Spain was established in a previous paper. An ecological, longitudinal and retrospective study was carried out. Generalized linear models (GLM) were performed to identify the variables that appeared to be related to adaptation. The adaptation was calculated as the difference in variation in MMT based on the average increase in maximum daily temperatures. In terms of adaptation to heat, urban populations have adapted more than non-urban populations. Seventy-nine percent (n = 11) of urban provinces have adapted to heat, compared to twenty-one percent (n = 3) of rural provinces that have not adapted. In terms of urban zones, income level and habituation to heat (values over the 95th percentile) were variables shown to be related to adaptation. In contrast, among non-urban provinces, a greater number of housing rehabilitation licenses and a greater number of health professionals were variables associated with higher increases in MMT, and therefore, with adaptation. These results highlight the need to carry out studies that allow for identifying the local factors that are most relevant and influential in population adaptation. More studies carried out at a small scale are needed.


Assuntos
Aclimatação , Temperatura Alta , Adaptação Fisiológica , Mudança Climática , Humanos , Mortalidade , Estudos Retrospectivos , Espanha/epidemiologia
3.
Environ Res ; 193: 110357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131709

RESUMO

BACKGROUND: It is known that on days with high temperatures higher mortality is observed and there is a minimum mortality temperature (MMT) point which is higher in places with warmer climate. This indicates some population adaptation to local climate but information on how quickly this adaptation will occur under climate change is lacking. METHODS: To investigate this, we associated daily mortality data with temperature during the warm period in 2004-2013 for London inhabitants born in five climatic zones (UK, Tropical, Sub-tropical, Boreal and Mixed). We fitted Poisson regression with distributed-lag non-linear models for each climatic zone group separately to estimate group-specific exposure-response associations and MMTs. We report relative risks of death comparing the 95th percentile (21 °C) and maximum (25 °C) of the temperature distribution in London with the zone-specific minimum mortality temperature. RESULTS: No heat-related mortality was observed for people born in countries with Sub-tropical and Mixed climates. We observed an increase of 26%, 35% and 39% in the risk of death at 25 °C compared to the MMT in people born in the UK (marine climate), Tropical and Boreal climate respectively. The temperatures with the lowest mortality in these groups ranged from 15.9 to 17.7 °C. DISCUSSION: Our findings imply that people born in different climatic zones do not adapt fully to their new environment within their lifetime. This implies that populations may not adapt readily to climate change and will suffer increased effects from heat. In the presence of climate change, policy makers should be aware of a delayed process of adaptation.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Feminino , Humanos , Londres/epidemiologia , Mortalidade , Gravidez , Estações do Ano , Temperatura
4.
Int J Biometeorol ; 63(12): 1641-1650, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31407098

RESUMO

Multi-city studies assessing the association between acute exposure to temperature and mortality in Latin American are limited. To analyze the short-term effect of changes in temperature (increase and decrease) on daily non-external and cardiovascular mortality from 1998 to 2014, in people 65 years old and over living in 10 metropolitan areas of Mexico. Analyses were performed through Poisson regression models with distributed lag non-linear models. Statistical comparison of minimum mortality temperature (MMT) and city-specific cutoffs of 24-h temperature mean values (5th/95th and 1st/99th percentiles) were used to obtain the mortality relative Risk (RR) for cold/hot and extreme cold/extreme hot, respectively, for the same day and lags of 0-3, 0-7, and 0-21 days. A meta-analysis was conducted to synthesize the estimates (RRpooled). Significant non-linear associations of temperature-mortality relation were found in U or inverted J shape. The best predictors of mortality associations with cold and heat were daily temperatures at lag 0-7 and lag 0-3, respectively. RRpooled of non-external causes was 6.3% (95%CI 2.7, 10.0) for cold and 10.2% (95%CI 4.4, 16.2) for hot temperatures. The RRpooled for cardiovascular mortality was 7.1% (95%CI 0.01, 14.7) for cold and 7.1% (95%CI 0.6, 14.0) for hot temperatures. Results suggest that, starting from the MMT, the changes in temperature are associated with an increased risk of non-external and specific causes of mortality in elderly people. Generally, heat effects on non-external and specific causes of mortality occur immediately, while cold effects occur within a few days and last longer.


Assuntos
Doenças Cardiovasculares , Temperatura Baixa , Idoso , Cidades , Temperatura Alta , Humanos , México , Mortalidade , Dinâmica não Linear , Temperatura
5.
Int J Environ Health Res ; 28(2): 192-201, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29562755

RESUMO

We aim to explore the Minimum Mortality Temperature (MMT) of different cities and regions, and that provides evidence for developing reasonable heat wave definition in China. The death data of 31 Chinese provincial capital cities from seven geographical regions during 2008-2013 was included in this study. In the first stage, a DLNM (Distributed Lag Non-linear Model) was used to estimate the association between mean temperature and mortality in a single city, then we pooled them with a multivariate meta-analysis to estimate the region-specific effects. The range of MMT was from 17.4 °C (Shijiazhuang) to 28.4 °C (Haikou), and the regional MMT increased as the original latitude decreased. Different cities and regions have their own specialized MMT due to geography and demographic characteristics. These findings indicate that the government deserves to adjust measures to local conditions to develop public health policies.


Assuntos
Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Mortalidade , China/epidemiologia , Cidades/epidemiologia , Humanos , Análise Multivariada , Dinâmica não Linear
6.
BMC Med Res Methodol ; 17(1): 137, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28882102

RESUMO

BACKGROUND: Rich literature has reported that there exists a nonlinear association between temperature and mortality. One important feature in the temperature-mortality association is the minimum mortality temperature (MMT). The commonly used approach for estimating the MMT is to determine the MMT as the temperature at which mortality is minimized in the estimated temperature-mortality association curve. Also, an approximate bootstrap approach was proposed to calculate the standard errors and the confidence interval for the MMT. However, the statistical properties of these methods were not fully studied. METHODS: Our research assessed the statistical properties of the previously proposed methods in various types of the temperature-mortality association. We also suggested an alternative approach to provide a point and an interval estimates for the MMT, which improve upon the previous approach if some prior knowledge is available on the MMT. We compare the previous and alternative methods through a simulation study and an application. In addition, as the MMT is often used as a reference temperature to calculate the cold- and heat-related relative risk (RR), we examined how the uncertainty in the MMT affects the estimation of the RRs. RESULTS: The previously proposed method of estimating the MMT as a point (indicated as Argmin2) may increase bias or mean squared error in some types of temperature-mortality association. The approximate bootstrap method to calculate the confidence interval (indicated as Empirical1) performs properly achieving near 95% coverage but the length can be unnecessarily extremely large in some types of the association. We showed that an alternative approach (indicated as Empirical2), which can be applied if some prior knowledge is available on the MMT, works better reducing the bias and the mean squared error in point estimation and achieving near 95% coverage while shortening the length of the interval estimates. CONCLUSIONS: The Monte Carlo simulation-based approach to estimate the MMT either as a point or as an interval was shown to perform well particularly when some prior knowledge is incorporated to reduce the uncertainty. The MMT uncertainty also can affect the estimation for the MMT-referenced RR and ignoring the MMT uncertainty in the RR estimation may lead to invalid results with respect to the bias in point estimation and the coverage in interval estimation.


Assuntos
Causas de Morte , Simulação por Computador , Temperatura , Morte , Humanos , Modelos Biológicos , Método de Monte Carlo , Fatores de Risco
7.
Int J Biometeorol ; 61(10): 1873-1884, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28540492

RESUMO

The daily temperature-mortality relationship is typically U shaped. The temperature of minimum mortality (MMT) has been shown to vary in space (higher at lower latitudes) and time (higher in recent periods). This indicates human populations adapt to their local environment. The pace of this adaptation is unknown. The objective of this study was to investigate the differences in the temperature-mortality relationship in continental France between foreign born and natives. Source data were the 5,273,005 death certificates of individuals living in continental France between 2000 and 2009 at the time of their death. Foreign-born deaths (N = 573,384) were matched 1:1 with a native-born death based on date of birth, sex, and place of death. Four regions of France based on similarity of their temperatures profiles were defined by unsupervised clustering. For each of these four regions, variations of all causes mortality with season and temperature of the day were modeled and compared between four groups of foreign born (Maghreb, sub-Saharan Africa, Southern Europe, and Northern Europe) and matched groups of natives. Overall, the temperature-mortality relationship and MMT were close in foreign born and in native born: The only difference between foreign born and native born concerned the attributable mortality to cold, found in several instances larger in foreign born. There are little differences in France between the temperature-mortality relationships in native born and in foreign born. This supports the hypothesis of an adaptation of these populations to the temperature patterns of continental France, which for those born in Africa differ markedly from the climatic pattern of their birth country.


Assuntos
Emigrantes e Imigrantes/estatística & dados numéricos , Mortalidade , Grupos Populacionais/estatística & dados numéricos , Temperatura , Aclimatação , Idoso , Idoso de 80 Anos ou mais , Feminino , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade
8.
Sci Total Environ ; 943: 173899, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38862043

RESUMO

The eastern Mediterranean region is characterized by rising temperature trends exceeding the corresponding global averages and is considered a climate change hot-spot. Although previous studies have thoroughly investigated the impact of extreme heat and cold on human mortality and morbidity, both for the current and future climate change scenarios, the temporal trends in temperature-related mortality or the potential historical adaptation to heat and cold extremes has never been studied in this region. This study focuses on cardiovascular mortality and assesses the temporal evolution of the Minimum Mortality Temperature (MMT), as well as the disease-specific cold- and heat-attributable fraction of mortality in three typical eastern Mediterranean environments (Athens, Thessaloniki and Cyprus). Data on daily cardiovascular mortality (ICD-10 code: I00-I99) and meteorological parameters were available between 1999 and 2019 for Athens, 1999 to 2018 for Thessaloniki and 2004 to 2019 for Cyprus. Estimation of cardiovascular MMT and mortality fractions relied on time-series Poisson regressions with distributed lag nonlinear models (DLNM) controlling for seasonal and long-term trends, performed over a series of rolling sub-periods at each site. The results indicated that in Athens, the MMT decreased from 23 °C (67.5th percentile) in 1999-2007 to 21.8 °C (62nd percentile) in 2011-2019, while in Cyprus the MMT decreased from 26.3 °C (79th percentile) in 2004-2012 to 23.9 °C (66.5th percentile) in 2011-2019. In Thessaloniki, the decrease in MMT was rather negligible. In all regions under study, the fractions of mortality attributed to both cold and heat followed an upward trend throughout the years. In conclusion, the demonstrated increase in cold attributable fraction and the decreasing temporal trend of MMT across the examined sites are suggestive of maladaptation to extreme temperatures in regions with warm climate and highlight the need for relevant public health policies and interventions.


Assuntos
Doenças Cardiovasculares , Mudança Climática , Temperatura Baixa , Temperatura Alta , Humanos , Doenças Cardiovasculares/mortalidade , Temperatura Alta/efeitos adversos , Mortalidade/tendências , Chipre , Grécia , Região do Mediterrâneo/epidemiologia
9.
Sci Total Environ ; 784: 147233, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088038

RESUMO

The objective of this study was to analyze at the level of Spain's 52 provinces province level the temporal evolution of minimum mortality temperatures (MMT) from 1983 to 2018, in order to determine whether the increase in MMT would be sufficient to compensate for the increase in environmental temperatures in Spain for the period. It also aimed to analyze whether the rate of evolution of MMT would be sufficient, were it to remain constant, to compensate for the predicted increase in temperatures in an unfavorable (RCP 8.5) emissions scenario for the time horizon 2051-2100. The independent variable was made up of maximum daily temperature data (Tmax) for the summer months in the reference observatories of each province for the 1983-2018 period. The dependent variable was daily mortality rate due to natural causes (ICD 10: A00-R99). For each year and province, MMT was determined using a quadratic or cubic fit (p < 0.05). Based on the annual MMT values, a linear fit was carried out that allowed for determining the time evolution of MMT. These values were compared with the evolution of Tmax registered in each observatory during the 1983-2018 analyzed period and with the predicted values of Tmax obtained for an RCP8.5 scenario for the period 2051-2100. The rate of global variance in Tmax in the summer months in Spain during the 1983-2018 period was 0.41 °C/decade, while MMT across the whole country increased at a rate of 0.64 °C/decade. Variations in the provinces were heterogeneous. For the 2051-2100 time horizon, there was predicted increase in Tmax values of 0.66 °C/decade, with marked geographical differences. Although at the global level it is possible to speak of adaptation, the heterogeneities among the provinces suggest that the local level measures are needed in order to facilitate adaptation in those areas where it is not occurring.


Assuntos
Aclimatação , Temperatura Alta , Mortalidade , Estações do Ano , Espanha/epidemiologia , Temperatura
10.
Environ Epidemiol ; 5(5): e169, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34934890

RESUMO

BACKGROUND: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. METHODS: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. RESULTS: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. CONCLUSIONS: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.

11.
Sci Total Environ ; 747: 141259, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777504

RESUMO

The increase in the frequency and intensity of heat waves is one of the most unquestionable effects of climate change. Therefore, the progressive increase in maximum temperatures will have a clear incidence on the increase in mortality, especially in countries that are vulnerable due to geographical location or their socioeconomic characteristics. Different research studies show that the mortality attributable to heat is decreasing globally, and research is centred on future scenarios. One way of detecting the existence of a lesser impact of heat is through the increase in the so-called temperature of minimum mortality (TMM). The objective of this study is to determine the temporal evolution of TMM in two Spanish provinces (Seville and Madrid) during the 1983-2018 period and to evaluate whether the rate of adaptation to heat is appropriate. We used the gross rate of daily mortality due to natural causes (CIEX: A00-R99) and the maximum daily temperature (°C) to determine the quinquennial TMM using dispersion diagrams and realizing fit using quadratic and cubic curvilinear estimation. The same analysis was carried out at the annual level, by fitting an equation to the line of TMM for each province, whose slope, if significant (p < 0.05) represents the annual rate of variation in TMM. The results observed in this quinquennial analysis showed that the TMM is higher in Seville than in Madrid and that it is higher among men than women in the two provinces. Furthermore, there was an increase in TMM in all of the quinquennium and a clear decrease in the final period. At the annual level, the linear fit was significant for Madrid for the whole population and corresponds to an increase in the TMM of 0.58 °C per decade. For Seville the linear fits were significant and the slopes of the fitted lines was 1.1 °C/decade. Both Madrid and Seville are adapting to the increase in temperatures observed over the past 36 years, and women are the group that is more susceptible to heat, compared to men. The implementation of improvements and evaluation of prevention plans to address the impact of heat waves should continue in order to ensure adequate adaptation in the future.


Assuntos
Termotolerância , Adaptação Fisiológica , Feminino , Temperatura Alta , Humanos , Masculino , Mortalidade , Espanha/epidemiologia , Temperatura
12.
Front Physiol ; 11: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256386

RESUMO

It is essentially unknown how humans adapt or will adapt to heat stress caused by climate change over a long-term interval. A possible indicator of adaptation may be the minimum mortality temperature (MMT), which is defined as the mean daily temperature at which the lowest mortality occurs. Another possible indicator may be the heat sensitivity, i.e., the percentage change in mortality per 1°C above the MMT threshold, or heat attributable fraction (AF), i.e., the percentage relative excess mortality above MMT. We estimated MMT and heat sensitivity/AF over a period of 23 years for older adults (≥65 years) in the Netherlands using three commonly used methods. These methods are segmented Poisson regression (SEG), constrained segmented distributed lag models (CSDL), and distributed lag non-linear models (DLNM). The mean ambient temperature increased by 0.03°C/year over the 23 year period. The calculated mean MMT over the 23-year period differed considerably between methods [16.4 ± 1.2°C (SE) (SEG), 18.9 ± 0.5°C (CSDL), and 15.3 ± 0.4°C DLNM]. MMT increased during the observed period according to CSDL (0.11 ± 0.05°C/year) and DLNM (0.15 ± 0.02°C/year), but not with SEG. The heat sensitivity, however, decreased for the latter method (0.06%/°C/year) and did not change for CSDL. Heat AF was calculated for the DLNM method and decreased with 0.07%/year. Based on these results we conclude that the susceptibility of humans to heat decreases over time, regardless which method was used, because human adaptation is shown by either an increase in MMT (CSDL and DLNM) or a decrease in heat sensitivity for unchanged MMT (SEG). Future studies should focus on what factors (e.g., physiological, behavioral, technological, or infrastructural adaptations) influence human adaptation the most, so it can be promoted through adaptation policies. Furthermore, future studies should keep in mind that the employed method influences the calculated MMT, which hampers comparability between studies.

13.
Sci Total Environ ; 695: 133560, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422334

RESUMO

Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities (>100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8-16 °C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality.


Assuntos
Mudança Climática , Exposição Ambiental/estatística & dados numéricos , Mortalidade/tendências , Temperatura , Cidades/epidemiologia , Humanos
14.
Environ Pollut ; 246: 745-752, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623830

RESUMO

Epidemiological studies on the impact of outdoor temperature to human health have demonstrated the capability of humans to adapt to local climate. However, there is limited information on the association between indoor temperature and human health, despite people spending most of their time indoors. The problem stems from the lack of sufficient indoor temperature measurement in the population. To overcome this obstacle, this paper presents an indirect epidemiological approach to evaluate the impact of high indoor temperature on mortality. The relationships between indoor-outdoor temperatures in different climate zones identified in the literature were combined with the outdoor temperature-mortality curves of the same locations to obtain the local indoor minimum mortality temperatures (iMMT), the temperature at which mortality is lowest, which by implication is the temperature at which the population is most comfortable on average. We show that the iMMT varies and has a weak linear relationship with the distance to the equator, which provides evidence of human adaptation to local indoor temperatures. These findings reinforce the adaptive comfort theory, which states that people can adapt to local indoor environment and establish their thermal comfort. Recognising the human adaptability to local climate will direct flexible and optimized policy to protect public health against extreme temperature events. This will also help reduce energy consumption for regulating indoor temperature without compromising the occupants' health.


Assuntos
Aclimatação , Temperatura Baixa/efeitos adversos , Exposição Ambiental/efeitos adversos , Temperatura Alta/efeitos adversos , Habitação , Causas de Morte , Cidades , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA