Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2305037120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603740

RESUMO

Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Divisão do Núcleo Celular , Quinase 1 Polo-Like
2.
Genes Cells ; 28(7): 503-515, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119463

RESUMO

Polo-like kinase 1 (Plk1) is a mitotic kinase that has multiple functions throughout the cell cycle. Catalytic activation of Plk1 is known to be regulated by phosphorylation of the kinase domain, including Thr210, and by releasing the kinase domain from its inhibitory polo-box domain. However, how Plk1 is activated to fulfill its proper roles, in time and space, is not well understood. In this study, we unintentionally found that the expression of a constitutively active form of human Plk1 is toxic to bacterial cells, such that cells contained point mutations that alleviate the kinase activity. Structural prediction revealed that these mutations are adjacent to the amino acids supporting the kinase activity. When human cells express these mutants, we found decreased levels of Plk1's substrate phosphorylation, resulting in mitotic defects. Moreover, unlike in bacterial cells, the expression of activated Plk1 mutants did not affect cell proliferation in human cells unless localized at the right place in mitosis. Our observations identified new suppressor mutations and underscored the importance of spatiotemporal regulation in Plk1, providing a basis for how we might intervene in this kinase for therapeutic purpose in human cells.


Assuntos
Proteínas de Ciclo Celular , Supressão Genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mitose/genética , Quinase 1 Polo-Like
3.
Cell Mol Life Sci ; 78(4): 1765-1779, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32789689

RESUMO

Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure normal cell division. We show here that depletion of microtubule-associated protein ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding protein. We show that ATIP3 controls metaphase spindle length by interacting with Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora A activity on the poles to control Kif2A targeting and spindle size. Collectively, these data emphasize the pivotal role of Aurora kinase A and its mutual regulation with ATIP3 in controlling spindle length.


Assuntos
Aurora Quinase A/genética , Cinesinas/genética , Fosfoproteínas/genética , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Células HeLa , Humanos , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mitose/genética
4.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056661

RESUMO

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.


Assuntos
Doenças Ósseas/patologia , Inibidores Enzimáticos/farmacologia , Doenças do Sistema Imunitário/patologia , Nefropatias/patologia , Malária/patologia , Quinases Relacionadas a NIMA/antagonistas & inibidores , Neoplasias/patologia , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/enzimologia , Resistência a Medicamentos , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/enzimologia , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Malária/tratamento farmacológico , Malária/enzimologia , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
5.
Proteins ; 87(4): 348-352, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582207

RESUMO

Monopolar spindle 1 (Mps1) is a dual-specificity protein kinase, orchestrating faithful chromosome segregation during mitosis. All reported structures of the Mps1 kinase adopt the hallmarks of an inactive conformation, which includes a mostly disordered activation loop. Here, we present a 2.4 Å resolution crystal structure of an "extended" version of the Mps1 kinase domain, which shows an ordered activation loop. However, the other structural characteristics of an active kinase are not present. Our structure shows that the Mps1 activation loop can fit to the ATP binding pocket and interferes with ATP, but less so with inhibitors binding, partly explain the potency of various Mps1 inhibitors.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo
6.
Curr Genet ; 65(6): 1325-1332, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31119371

RESUMO

Centromere identity is specified epigenetically by specialized nucleosomes containing the evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) which is essential for faithful chromosome segregation. However, the mechanisms of epigenetic regulation of Cse4 have not been clearly defined. We have identified two kinases, Cdc5 (Plk1 in humans) and Ipl1 (Aurora B kinase in humans) that phosphorylate Cse4 to prevent chromosomal instability (CIN). Cdc5 associates with Cse4 in mitosis and Cdc5-mediated phosphorylation of Cse4 is coincident with the centromeric enrichment of Cdc5 during metaphase. Defects in Cdc5-mediated Cse4 phosphorylation causes CIN, whereas constitutive association of Cdc5 with Cse4 results in lethality. Cse4 is also a substrate for Ipl1 and phospho-mimetic cse4 mutants suppress growth defects of ipl1 and Ipl1 kinetochore substrate mutants, namely dam1 spc34 and ndc80. Ipl1-mediated phosphorylation of Cse4 regulates kinetochore-microtubule interactions and chromosome biorientation. We propose that collaboration of Cdc5- and Ipl1-mediated phosphorylation of Cse4 modulates kinetochore structure and function, and chromosome biorientation. These findings demonstrate how phosphorylation of Cse4 regulates the integrity of the kinetochore, and acts as an epigenetic marker for mitotic control.


Assuntos
Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aurora Quinases/genética , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Biochim Biophys Acta ; 1865(2): 190-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26899266

RESUMO

PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Transformação Celular Neoplásica , Centrossomo/fisiologia , Citocinese , Dano ao DNA , Humanos , Microtúbulos/fisiologia , Quinase 1 Polo-Like
8.
Proteins ; 84(12): 1761-1766, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27699881

RESUMO

Monopolar spindle 1 (Mps1, also known as TTK) is a protein kinase crucial for ensuring that cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules. Incomplete chromosomal attachment leads to abnormal chromosome counts in the daughter cells (aneuploidy), a condition common in many solid cancers. Therefore Mps1 is an established target in cancer therapy. Mps1 kinase inhibitors include reversine (2-(4-morpholinoanilino)-6-cyclohexylaminopurine), a promiscuous compound first recognized as an inhibitor of the Aurora B mitotic kinase. Here, we present the 3.0-Å resolution crystal structure of the Mps1 kinase domain bound to reversine. Structural comparison of reversine bound to Mps1 and Aurora B, indicates a similar binding pose for the purine moiety of reversine making three conserved hydrogen bonds to the protein main chain, explaining the observed promiscuity of this inhibitor. The cyclohexyl and morpholinoaniline moieties of reversine however, have more extensive contacts with the protein in Mps1 than in Aurora B. This is reflected both in structure-based docking energy calculations, and in new experimental data we present here, that both confirm that the affinity of reversine towards Mps1 is about two orders of magnitude higher than towards Aurora B. Thus, our data provides detailed structural understanding of the existing literature that argues reversine inhibits Mps1 more efficiently than Aurora B based on biochemical and in-cell assays. Proteins 2016; 84:1761-1766. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/química , Aurora Quinase B/química , Proteínas de Ciclo Celular/química , Morfolinas/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Purinas/química , Sequência de Aminoácidos , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Termodinâmica
9.
J Cell Sci ; 127(Pt 19): 4111-22, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128564

RESUMO

The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/enzimologia , Proteínas Quinases/fisiologia , Fuso Acromático/enzimologia , Animais , Humanos , Mitose/fisiologia
10.
Bioorg Med Chem ; 22(17): 4968-97, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25043312

RESUMO

TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.6nM) demonstrated good activity in cell based assay and selectivity against a panel of human kinases. A co-complex TTK X-ray crystal structure and results of a xenograft study with TTK inhibitors from this class are described.


Assuntos
Amidas/farmacologia , Benzenoacetamidas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Benzenoacetamidas/síntese química , Benzenoacetamidas/química , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Indazóis/síntese química , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
11.
Cell Div ; 19(1): 21, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886738

RESUMO

This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.

12.
J Mol Graph Model ; 109: 108022, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562852

RESUMO

Targeting Polo-like kinase 1 (Plk1) by molecular inhibitors is being a promising approach for tumor therapy. Nevertheless, insufficient methodical analyses have been done to characterize the interactions inside the Plk1 binding pocket. In this study, an extensive combined ligand and structure-based drug design workflow was conducted to data-mine the structural requirements for Plk1 inhibition. Consequently, the binding modes of 368 previously known Plk1 inhibitors were investigated by pharmacophore generation technique. The resulted pharmacophores were engaged in the context of Genetic function algorithm (GFA) and Multiple linear regression (MLR) analyses to search for a prognostic QSAR model. The most successful QSAR model was with statistical criteria of (r2277 = 0.76, r2adj = 0.76, r2pred = 0.75, Q2 = 0.73). Our QSAR-selected pharmacophores were validated by Receiver Operating Characteristic (ROC) curve analysis. Later on, the best QSAR model and its associated pharmacophoric hypotheses (HypoB-T4-5, HypoI-T2-7, HypoD-T4-3, and HypoC-T3-3) were used to identify new Plk1 inhibitory hits retrieved from the National Cancer Institute (NCI) database. The most potent hits exhibited experimental anti-Plk1 IC50 of 1.49, 3.79. 5.26 and 6.35 µM. Noticeably, our hits, were found to interact with the Plk1 kinase domain through some important amino acid residues namely, Cys67, Lys82, Cys133, Phe183, and Asp194.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Ligantes , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Quinase 1 Polo-Like
13.
Mol Cell Oncol ; 7(6): 1832419, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33235921

RESUMO

Cell-cycle dependent redox changes result in increased protein oxidation in mitotic cells. We show that oxidative modifications of a conserved cysteine residue within Aurora A kinase (AURKA) can promote its activation during mitosis. Targeting redox-sensitive cysteine residues within AURKA may lead to the development of novel anti-cancer agents with improved clinical efficacy.

14.
Toxicol Sci ; 170(2): 382-393, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132080

RESUMO

A tiered bioassay and data analysis scheme is described for elucidating the most common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of mitotic kinase(s). To evaluate this strategy, TK6 cells were first exposed to each of 27 presumed aneugens over a range of concentrations. After 4 and 24 h of treatment, γH2AX, p53, phospho-histone H3 (p-H3), and polyploidization biomarkers were evaluated using the MultiFlow DNA Damage Assay Kit. The assay identified 27 of 27 chemicals as genotoxic, with 25 exhibiting aneugenic signatures, 1 aneugenic and clastogenic, and 1 clastogenic. Subsequently, a newly described follow-up assay was employed to investigate the aneugenic agents' molecular targets. For these experiments, TK6 cells were exposed to each of 26 chemicals in the presence of 488 Taxol. After 4 h, cells were lysed and the liberated nuclei and mitotic chromosomes were stained with a nucleic acid dye and labeled with fluorescent antibodies against p-H3 and Ki-67. Flow cytometric analyses revealed that alterations to 488 Taxol-associated fluorescence were only observed with tubulin binders-increases in the case of tubulin stabilizers, decreases with destabilizers. Mitotic kinase inhibitors with known Aurora kinase B inhibiting activity were the only aneugens that dramatically decreased the ratio of p-H3-positive to Ki-67-positive nuclei. Unsupervised hierarchical clustering based on 488 Taxol fluorescence and p-H3: Ki-67 ratios clearly distinguished compounds with these disparate molecular mechanisms. Furthermore, a classification algorithm based on an artificial neural network was found to effectively predict molecular target, as leave-one-out cross-validation resulted in 25/26 agreement with a priori expectations. These results are encouraging, as they suggest that an adequate number of training set chemicals, in conjunction with a machine learning algorithm based on 488 Taxol, p-H3, and Ki-67 responses, can reliably elucidate the most commonly encountered aneugenic molecular targets.


Assuntos
Aneugênicos/farmacologia , Testes de Mutagenicidade/métodos , Células Cultivadas , Dano ao DNA , Histonas/metabolismo , Humanos , Antígeno Ki-67/análise , Aprendizado de Máquina , Redes Neurais de Computação
15.
Protein Sci ; 28(3): 524-532, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30461091

RESUMO

Vaccinia-related kinase 1 (VRK1), a serine/threonine mitotic kinase, is widely over-expressed in dividing cells and regarded as a cancer drug target primarily due to its function as an early response gene in cell proliferation. However, the mechanism of VRK1 phosphorylation and substrate activation is not well understood. More importantly even the molecular basis of VRK1 interaction with its cofactor, adenosine triphosphate (ATP), is unavailable to-date. As designing specific inhibitors remains to be the major challenge in kinase research, such a molecular understanding will enable us to design ATP-competitive specific inhibitors of VRK1. Here we report the molecular characterization of VRK1 in complex with AMP-PNP, a non-hydrolyzable ATP-analog, using NMR titration followed by the co-crystal structure determined upto 2.07 Å resolution. We also carried out the structural comparison of the AMP-PNP bound-form with its apo and inhibitor-bound counterparts, which has enabled us to present our rationale toward designing VRK1-specific inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Adenilil Imidodifosfato/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química
16.
Front Cell Dev Biol ; 6: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29459892

RESUMO

Protein kinases are major regulators of mitosis, with over 30% of the mitotic proteome phosphorylated on serines, threonines and tyrosines. The human genome encodes for 518 kinases that have a structurally conserved catalytic domain and includes about a dozen of cell division specific ones. Yet each kinase has unique structural features that allow their distinct substrate recognition and modes of regulation. These unique regulatory features determine their accurate spatio-temporal activation critical for correct progression through mitosis and are exploited for therapeutic purposes. In this review, we will discuss the principles of mitotic kinase activation and the structural determinants that underlie functional specificity.

17.
Elife ; 72018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29417930

RESUMO

The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies.


Assuntos
Carcinogênese , Expressão Gênica , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Inativação de Genes , Humanos , Camundongos Nus
18.
Int Rev Cell Mol Biol ; 328: 105-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28069132

RESUMO

The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Animais , Humanos , Modelos Biológicos
19.
Expert Opin Pharmacother ; 17(8): 1113-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26898217

RESUMO

INTRODUCTION: Although the advent of target therapy for lung cancer has brought about outstanding results, this benefit is confined to a subgroup of molecularly selected patients, whereas for most non-small cell lung cancer (NSCLC) patients, chemotherapy still represents the milestone of treatment. Since their introduction into clinics, microtubule targeting agents (MTA), including vinca alkaloids and taxanes, have been extensively used for NSCLC in different settings and combinations. AREAS COVERED: In this review, MTA are classified according to their mechanism of action, with a focus on the most common mechanisms of resistance. Moreover, an overview of the most remarkable clinical data regarding MTA in adjuvant, neoadjuvant and advanced setting is provided. Finally, the novel mitotic kinases inhibitors are described according to their different mechanism of action and clinical activity compared to MTA. EXPERT OPINION: Unfortunately, the awaited benefit deriving from the actually available chemotherapeutic regimens for advanced NSCLC has reached a plateau. In this scenario, the identification of reliable predictive biomarkers represents a major challenge. Moreover, different schedules for MTA administration are currently under investigation, such as the combination of MTA with other drugs able to bypass the resistance derived from the 'mitotic slippage' and the use of metronomic administration of spindle poisons with anti-angiogenic or immunomodulatory agents.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Moduladores de Tubulina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia
20.
Front Oncol ; 5: 295, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779440

RESUMO

Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic progression and are frequently overexpressed in human cancers. Among the three members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant Aurora-A kinase activity has been implicated in oncogenic transformation through the development of chromosomal instability and tumor cell heterogeneity. Recent studies also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression through activation of epithelial-mesenchymal transition reprograming resulting in the genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive target for cancer therapeutics, and the development of small molecule inhibitors of Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in oncogenic transformation and tumor progression. We will also review the current clinical studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the management of cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA