Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(5): 1989-1999, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827209

RESUMO

Cancer stem-like cells (CSCs) play key roles in chemoresistance, tumor metastasis, and clinical relapse. However, current CSC inhibitors lack specificity, efficacy, and applicability to different cancers. Herein, we introduce a nanomaterial-based approach to photothermally induce the differentiation of CSCs, termed "photothermal differentiation", leading to the attenuation of cancer cell stemness, chemoresistance, and metastasis. MoS2 nanosheets and a moderate photothermal treatment were applied to target a CSC surface receptor (i.e., CD44) and modulate its downstream signaling pathway. This treatment forces the more stem-like cancer cells to lose the mesenchymal phenotype and adopt an epithelial, less stem-like state, which shows attenuated self-renewal capacity, more response to anticancer drugs, and less invasiveness. This approach could be applicable to various cancers due to the broad availability of the CD44 biomarker. The concept of using photothermal nanomaterials to regulate specific cellular activities driving the differentiation of CSCs offers a new avenue for treating refractory cancers.


Assuntos
Antineoplásicos , Neoplasias , Molibdênio/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Diferenciação Celular , Neoplasias/tratamento farmacológico
2.
Small ; 19(24): e2208063, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908089

RESUMO

The exposure of MoS2 nanosheets can cause cytotoxicity, which causes health risks and affects its medical applications. However, knowledge of the underlying molecular mechanisms remains limited. This study reports that MoS2 nanosheets induces ferroptosis in vivo and in vitro, which is caused by the nanosheet themselves rather than by the dissolved ions. MoS2 nanosheets induce ferroptosis in epithelial (BEAS-2B) and macrophage (RAW264.7) cells due to nuclear receptor coactivator 4 (NCOA4)-dependent excusive ferritinophagy and the inhibition of ferroportin-1 (FPN). In this process, most of the MoS2 nanosheets enter the cells via macropinocytosis and are localized to the lysosome, contributing to an increase in the lysosomal membrane permeability. At the same time, NCOA4-dependent ferritinophagy is activated, and ferritin is degraded in the lysosome, which generates Fe2+ .Fe2+ leaks into the cytoplasm, leading to ferroptosis. Furthermore, the inhibition of FPN further aggravates the overload of Fe2+ in the cell. It has also been observed that ferroptosis is increased in lung tissue in mouse models exposed to MoS2 nanosheets. This work highlights a novel mechanism by which MoS2 nanosheets induce ferroptosis by promoting NCOA4-dependent ferritinophagy and inhibiting FPN, which could be of importance to elucidate the toxicity and identify the medical applications of 2D nanoparticles.


Assuntos
Ferroptose , Ferro , Camundongos , Animais , Ferro/metabolismo , Molibdênio/farmacologia , Coativadores de Receptor Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Autofagia
3.
Chemistry ; 29(56): e202301596, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497808

RESUMO

Liquid exfoliation can be considered as a viable approach for the scalable production of 2D materials due to its various benefits, although the polydispersity in the obtained nanosheet size hinders their straightforward incorporation. Size-separation can help alleviate these concerns, however a correlation between nanosheet size and property needs to be established to bring about size-specific applicability. Herein, size-selected aqueous nanosheet dispersions have been obtained via centrifugation-based protocols, and their chemical activity in the spontaneous reduction of chloroplatinic acid is investigated. Growth of ultrasmall Pt nanoparticles was achieved on nanosheet surfaces without a need for reducing agents, and stark differences in the nanoparticle coverage were observed as a function of nanosheet size. Defects in the nanosheets were probed via Raman spectroscopy, and correlated to the observed size-activity. Additionally, the effect of reaction temperature during synthesis was investigated. The electrochemical activity of the ultrasmall Pt nanoparticle decorated MoS2 nanosheets was evaluated for the hydrogen evolution reaction, and enhancement in performance was observed with nanosheet size, and nanoparticle decoration density. These findings shine light on the significance of nanosheet size in controlling spontaneous reduction reactions, and provide a deeper insight to intrinsic properties of liquid exfoliated nanosheets.

4.
Nanotechnology ; 34(37)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224799

RESUMO

Molybdenum disulfide (MoS2) has been deemed as one of the promising noble-metal-free electrocatalysts for hydrogen evolution reaction (HER), but it suffers from the inert basal plane and low electronic conductivity. Regulating the morphology of MoS2during the synthesis on conductive substrates is a synergistic strategy for enhancing the HER performance. In this work, vertical MoS2nanosheets were fabricated on carbon cloth (CC) using an atmospheric pressure chemical vapor deposition method. The growth process could be effectively tuned through introducing hydrogen gas during vapor deposition process, resulting in nanosheets with increased edge density. The mechanism for edge-enriching through controlling the growth atmosphere is systematically studied. The as-prepared MoS2exhibits excellent HER activity due to the combination of optimized microstructures and coupling with CC. Our findings provide new insights to design advanced MoS2-based electrocatalysts for HER.

5.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471269

RESUMO

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Assuntos
Rotas de Resultados Adversos , Oligoquetos , Poluentes do Solo , Animais , Poluentes do Solo/toxicidade , Oligoquetos/metabolismo , Lipidômica , Molibdênio/toxicidade , Ecossistema , Solo
6.
Environ Sci Technol ; 57(26): 9884-9893, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37319319

RESUMO

Transition metal sulfides have exhibited remarkable advantages in gaseous elemental mercury (Hg0) capture under high SO2 atmosphere, whereas the weak thermal stability significantly inhibits their practical application. Herein, a novel N,N-dimethylformamide (DMF) insertion strategy via crystal growth engineering was developed to successfully enhance the Hg0 capture ability of MoS2 at an elevated temperature for the first time. The DMF-inserted MoS2 possesses an edge-enriched structure and an expanded interlayer spacing (9.8 Å) and can maintain structural stability at a temperature as high as 272 °C. The saturated Hg0 adsorption capacities of the DMF-inserted MoS2 were measured to be 46.91 mg·g-1 at 80 °C and 27.40 mg·g-1 at 160 °C under high SO2 atmosphere. The inserted DMF molecules chemically bond with MoS2, which prevents possible structural collapse at a high temperature. The strong interaction of DMF with MoS2 nanosheets facilitates the growth of abundant defects and edge sites and enhances the formation of Mo5+/Mo6+ and S22- species, thereby improving the Hg0 capture activity at a wide temperature range. Particularly, Mo atoms on the (100) plane represent the strongest active sites for Hg0 oxidation and adsorption. The molecule insertion strategy developed in this work provides new insights into the engineering of advanced environmental materials.


Assuntos
Mercúrio , Molibdênio , Dissulfetos , Sulfetos
7.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
8.
Environ Res ; 216(Pt 4): 114818, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400219

RESUMO

Microbial fuel cell-electro-Fenton system (MEF) has attracted attention due to refractory organic pollutants removal, where H2O2 is in-situ produced without external energy supply. Enhancement of H2O2 production and the activation of H2O2 to ·OH are the keys to improve degradation performance. Development of bifunctional catalytic cathode is a viable strategy. Herein, the α-FeOOH/MoS2 nanocomposites was fabricated by a novel facile hydrothermal method based on molybdenite-exfoliated MoS2 nanosheets suspension, which was used as modified cathode in a MEF system. The obtained α-FeOOH/1 wt%MoS2 cathode exhibited highest power density of 292.38 mW/m2, which was about 3.7 and 1.7 times higher than that of graphite plate and α-FeOOH, respectively. Doping of MoS2 nanosheets significantly enhanced electrocatalytic activity of the cathode and promoted in-situ H2O2 generation. Meanwhile, the exposed reductive Mo4+ on the surface of MoS2 could greatly facilitate the conversion cycle of Fe(III)/Fe(II), leading to the efficient activation of H2O2 into ·OH. The MEF with α-FeOOH/1 wt%MoS2 cathode exhibited excellent degradation and mineralization performance for MB, rhodamine B and tetracycline hydrochloride at optimized reaction condition. Furthermore, the MEF can simultaneously achieve MB oxidation and Cr(VI) reduction, and the corresponding removal ratio can reach up to 91.45% and 100%, respectively. Based on simple preparation method as well as recyclability and excellent catalytic property, the α-FeOOH/MoS2 composite catalyst is considered as a promising MEF cathode for efficient wastewater treatment.


Assuntos
Molibdênio , Purificação da Água , Peróxido de Hidrogênio , Ferro , Purificação da Água/métodos , Eletrodos , Oxirredução
9.
J Nanobiotechnology ; 21(1): 333, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717020

RESUMO

BACKGROUND: Curcumin (Cur), a bioactive component of Chinese traditional medicine, has demonstrated inhibitory properties against cancer cell proliferation while synergistically enhancing the anticancer efficacy of erlotinib (Er). However, the individual limitations of both drugs, including poor aqueous solubility, lack of targeting ability, short half-life, etc., and their distinct pharmacokinetic profiles mitigate or eliminate their combined antitumor potential. RESULTS: In this study, we developed a molybdenum disulfide (MoS2)-based delivery system, functionalized with polyethylene glycol (PEG) and biotin, and co-loaded with Cur and Er, to achieve efficient cancer therapy. The MoS2-PEG-Biotin-Cur/Er system effectively converted near-infrared (NIR) light into heat, thereby inducing direct photothermal ablation of cancer cells and promoting controlled release of Cur and Er. Biotin-mediated tumor targeting facilitated the selective accumulation of MoS2-PEG-Biotin-Cur/Er at the tumor site, thus enhancing the synergistic antitumor effects of Cur and Er. Remarkably, MoS2-PEG-Biotin-Cur/Er achieved the combination of synergistic chemotherapy and photothermal therapy (PTT) upon NIR irradiation, effectively suppressing lung cancer cell proliferation and inhabiting tumor growth in vivo. CONCLUSIONS: The as-synthesized MoS2-PEG-Biotin-Cur/Er, featuring high targeting ability, NIR light-responsive drug release, and the integration of synergistic chemotherapy and PTT, may provide a promising strategy for the treatment of lung cancer in clinical practice.


Assuntos
Curcumina , Neoplasias Pulmonares , Humanos , Curcumina/farmacologia , Cloridrato de Erlotinib/farmacologia , Terapia Fototérmica , Biotina , Molibdênio , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis
10.
Environ Toxicol ; 38(8): 1925-1938, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186336

RESUMO

MoS2 nanosheets (NSs) are novel 2D nanomaterials (NMs) being used in many important fields. Recently, we proposed the need to evaluate the influences of NMs on Kruppel-like factors (KLFs) even if these materials are relatively biocompatible. In this study, we investigated the influences of MoS2 NSs or bulk on KLF4 signaling pathway in 3D Caco-2 spheroids in vitro and mouse intestines in vivo. Through the analysis of our previous RNA-sequencing data, we found that exposure to MoS2 NSs or bulk activated KLF4 expression in 3D Caco-2 spheroids. Consistently, these materials also activated KLF4-related gene ontology (GO) terms and down-regulated a panel of KLF4-downstream genes. To verify these findings, we repeatedly exposed mice to MoS2 NSs or bulk materials via intragastrical administration (1 mg/kg bodyweight, once a day, for 4 days). It was shown that oral exposure to these materials decreased bodyweight, leading to relatively higher organ coefficients. As expected, exposure to both types of materials increased Mo elements as well as other trace elements, such as Zn, Fe, and Mn in mouse intestines. The exposure also induced morphological changes of intestines, such as shortening of intestinal villi and decreased crypt depth, which may result in decreased intestinal lipid staining. Consistent with RNA-sequencing data, we found that material exposure increased KLF4 protein staining in mouse intestines and decreased two KLF4 downstream proteins, namely extracellular signal-regulated kinase (ERK) and serine/threonine kinase (AKT). We concluded that MoS2 materials were capable to activate KLF4-signaling pathway in intestines both in vivo and in vitro.


Assuntos
Fator 4 Semelhante a Kruppel , Molibdênio , Humanos , Camundongos , Animais , Molibdênio/toxicidade , Células CACO-2 , Intestinos , RNA
11.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687905

RESUMO

An organic electrochemical transistor (OECT) with MoS2 nanosheets modified on the gate electrode was proposed for glucose sensing. MoS2 nanosheets, which had excellent electrocatalytic performance, a large specific surface area, and more active sites, were prepared by liquid phase ultrasonic exfoliation to modify the gate electrode of OECT, resulting in a large improvement in the sensitivity of the glucose sensor. The detection limit of the device modified with MoS2 nanosheets is down to 100 nM, which is 1~2 orders of magnitude better than that of the device without nanomaterial modification. This result manifests not only a sensitive and selective method for the detection of glucose based on OECT but also an extended application of MoS2 nanosheets for other biomolecule sensing with high sensitivity.


Assuntos
Molibdênio , Nanoestruturas , Eletrodos , Glucose , Sistemas de Infusão de Insulina
12.
Nano Lett ; 22(14): 5651-5658, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35786976

RESUMO

Edge states of two-dimensional transition-metal dichalcogenides (TMDCs) are crucial to quantum circuits and optoelectronics. However, their dynamics are pivotal but remain unclear due to the edge states being obscured by their bulk counterparts. Herein, we study the state-resolved transient absorption spectra of ball-milling-produced MoS2 nanosheets with 10 nm lateral size with highly exposed free edges. Electron energy loss spectroscopy and first-principles calculations confirm that the edge states are located in the range from 1.23 to 1.78 eV. Upon above bandgap excitations, excitons populate and diffuse toward the boundary, where the potential gradient blocks excitons and the edge states are formed through interband transitions within 400 fs. With below bandgap excitations, edge states are slowed down to 1.1 ps due to the weakened valence orbital coupling. These results shed light on the fundamental exciton dissociation processes on the boundary of functionalized TMDCs, enabling the ground work for applications in optoelectronics and light-harvesting.

13.
Nano Lett ; 22(7): 2956-2963, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285225

RESUMO

Ion intercalation assisted exfoliation is the oldest and most popular method for the scalable synthesis of molybdenum disulfide (MoS2) nanosheets. The commonly used organolithium reagents for Li+ intercalation are n-butyllithium (n-BuLi) and naphthalenide lithium (Nap-Li); however, the highly pyrophoric nature of n-BuLi and the overly reducing power of Nap-Li hinder their extensive application. Here, a novel organolithium reagent, pyrene lithium (Py-Li), which has intrinsic safe properties and a well-matched redox potential, is reported for the intercalation and exfoliation of MoS2. The redox potential of Py-Li (0.86 V vs Li+/Li) is located just between the intercalation (1.13 V) and decomposition (0.55 V) potentials of bulk MoS2, thus allowing precise Li+ intercalation to form a lamellar LiMoS2 compound without undesirable structural damage. The lithiation reaction can be accomplished within 1 h at room temperature and the exfoliated nanosheets are almost single layer. This method also offers the advantages of low cost, high repeatability, and ease in realizing large-scale production.

14.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959731

RESUMO

Novel nanostructured platforms based on Pencil Graphite Electrodes (PGEs), modified with pyrene carboxylic acid (PCA) functionalized Reduced Graphene Oxide (rGO), and then decorated by chronoamperometry electrodeposition of MoS2 nanoroses (NRs) (MoS2NRs/PCA-rGO/PGEs) were manufactured for the electrocatalytic detection of hydrazine (N2H4) and 4-nitrophenol, pollutants highly hazardous for environment and human health. The surface morphology and chemistry of the MoS2NRs/PCA-rGO/PGEs were characterized by scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopy (XPS), assessing the coating of the PCA-rGO/PGEs by dense multilayers of NRs. N2H4 and 4-nitrophenol have been monitored by Differential Pulse Voltammetry (DPV), and the MoS2NRs/PCA-rGO/PGEs electroanalytical properties have been compared to the PGEs, as neat and modified by PCA-rGO. The MoS2NRs/PCA-rGO/PGEs demonstrated a higher electrochemical and electrocatalytic activity, due to their high surface area and conductivity, and very fast heterogeneous electron transfer kinetics at the interphase with the electrolyte. LODs lower than the U.S. EPA recommended concentration values in drinking water, namely 9.3 nM and 13.3 nM, were estimated for N2H4 and 4-nitrophenol, respectively and the MoS2NRs/PCA-rGO/PGEs showed good repeatability, reproducibility, storage stability, and selectivity. The effectiveness of the nanoplatforms for monitoring N2H4 and 4-nitrophenol in tap, river, and wastewater was addressed.

15.
Small ; 18(47): e2204534, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228094

RESUMO

The electric-field effect is an important factor to enhance the charge diffusion and transfer kinetics of interfacial electrode materials. Herein, by designing a heterojunction, the influence of the electric-field effect on the kinetics of the MoS2 as cathode materials for aqueous Zn-ion batteries (AZIBs) is deeply investigated. The hybrid heterojunction is developed by hydrothermal growth of MoS2 nanosheets on robust titanium-based transition metal compound ([titanium nitride, TiN] and [titanium oxide, TiO2 ]) nanowires, denoted TNC@MoS2 and TOC@MoS2 NWS, respectively. Benefiting from the heterostructure architecture and electric-field effect, the TNC@MoS2 electrodes exhibit an impressive rate performance of 200 mAh g-1 at 50 mA g-1 and cycling stability over 3000 cycles. Theoretical studies reveal that the hybrid architecture exhibits a large-scale electric-field effect at the interface between TiN and MoS2 , enhances the adsorption energy of Zn-ions, and increases their charge transfer, which leads to accelerated diffusion kinetics. In addition, the electric-field effect can also be effectively applied to TiO2 and MoS2 , confirming that the concept of heterostructures stimulating electric-field can provide a relevant understanding for the architecture of other cathode materials for AZIBs and beyond.

16.
Small ; 18(28): e2201770, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35694762

RESUMO

Higher-metal (HM) nitrides are a fascinating family of materials being increasingly researched due to their unique physical and chemical properties. However, few focus on investigating their application in a solar steam generation because the controllable and large-scale synthesis of these materials remains a significant challenge. Herein, it is reported that higher-metal molybdenum nitride nanosheets (HM-Mo5 N6 ) can be produced at the gram-scale using amine-functionalized MoS2 as precursor. The first-principles calculation confirms amine-functionalized MoS2 nanosheet effectively lengthens the bonds of MoS leading to a lower bond binding energy, promoting the formation of MoN bonds and production of HM-Mo5 N6 . Using this strategy, other HM nitride nanosheets, such as W2 N3 , Ta3 N5 , and Nb4 N5 , can also be synthesized. Specifically, under one simulated sunlight irradiation (1 kW m-2 ), the HM-Mo5 N6 nanosheets are heated to 80 °C within only ≈24 s (0.4 min), which is around 78 s faster than the MoS2 samples (102 s/1.7 min). More importantly, HM-Mo5 N6 nanosheets exhibit excellent solar evaporation rate (2.48 kg m-2  h-1 ) and efficiency (114.6%), which are 1.5 times higher than the solar devices of MoS2 /MF.

17.
J Nanobiotechnology ; 20(1): 136, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292034

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets (e.g., MoS2) with metallic phase (1T or 1T´ phase) have been proven to exhibit superior performances in various applications as compared to their semiconducting 2H-phase counterparts. However, it remains unclear how the crystal phase of 2D TMD nanosheets affects their sonodynamic property. In this work, we report the preparation of MoS2 nanosheets with different phases (metallic 1T/1T´ or semiconducting 2H) and exploration of its crystal-phase effect on photothermal-enhanced sonodynamic antibacterial therapy. Interestingly, the defective 2D MoS2 nanosheets with high-percentage metallic 1T/1T´ phase (denoted as M-MoS2) present much higher activity towards the ultrasound-induced generation of reactive oxygen species (ROS) as compared to the semiconducting 2H-phase MoS2 nanosheets. More interestingly, owing to its metallic phase-enabled strong absorption in the near-infrared-II (NIR-II) regime, the ultrasound-induced ROS generation performance of the M-MoS2 nanosheets can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after modifying with polyvinylpyrrolidone, the M-MoS2 nanosheets can be used as an efficient sonosensitizer for photothermal-enhanced sonodynamic bacterial elimination under ultrasound treatment combining with NIR-II laser irradiation. This study demonstrates that metallic MoS2 nanosheets can be used as a promising sonosensitizer for antibacterial therapy, which might be also promising for cancer therapies.


Assuntos
Antibacterianos , Molibdênio , Antibacterianos/farmacologia , Bactérias , Molibdênio/química , Molibdênio/farmacologia , Povidona
18.
J Nanobiotechnology ; 20(1): 216, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524267

RESUMO

Blockade of programmed cell death 1 ligand (PD-L1) has been used to treat triple-negative breast cancer (TNBC), and various strategies are under investigation to improve the treatment response rate. Inhibition of glutamine metabolism can reduce the massive consumption of glutamine by tumor cells and meet the demand for glutamine by lymphocytes in tumors, thereby improving the anti-tumor effect on the PD-L1 blockade therapy. Here, molybdenum disulfide (MoS2) was employed to simultaneously deliver anti-PDL1 antibody (aPDL1) and V9302 to boost the anti-tumor immune response in TNBC cells. The characterization results show that MoS2 has a dispersed lamellar structure with a size of about 181 nm and a size of 232 nm after poly (L-lysine) (PLL) modification, with high stability and biocompatibility. The loading capacity of aPDL1 and V9302 are 3.84% and 24.76%, respectively. V9302 loaded MoS2 (MoS2-V9302) can effectively kill 4T1 cells and significantly reduce glutamine uptake of tumor cells. It slightly increases CD8+ cells in the tumor and promotes CD8+ cells from the tumor edge into the tumor core. In vivo studies demonstrate that the combination of aPDL1 and V9302 (MoS2-aPDL1-V9302) can strongly inhibit the growth of TNBC 4T1 tumors. Interestingly, after the treatment of MoS2-aPDL1-V9302, glutamine levels in tumor interstitial fluid increased. Subsequently, subtypes of cytotoxic T cells (CD8+) in the tumors were analyzed according to two markers of T cell activation, CD69, and CD25, and the results reveal a marked increase in the proportion of activated T cells. The levels of cytokines in the corresponding tumor interstitial fluid are also significantly increased. Additionally, during the treatment, the body weights of the mice remain stable, the main indicators of liver and kidney function in the blood do not increase significantly, and there are no obvious lesions in the main organs, indicating low systemic toxicity. In conclusion, our study provides new insights into glutamine metabolism in the tumor microenvironment affects immune checkpoint blockade therapy in TNBC, and highlights the potential clinical implications of combining glutamine metabolism inhibition with immune checkpoint blockade in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Glutamina , Humanos , Inibidores de Checkpoint Imunológico , Ligantes , Camundongos , Molibdênio/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
19.
Mikrochim Acta ; 189(8): 296, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900604

RESUMO

Aptamers against deoxynivalenol (DON) were selected through capture-systematic evolution of ligands by exponential enrichment. Through isothermal titration calorimetry and fluorimetric assay, aptamer candidate DN-2 demonstrated good affinity to DON with Kd value of 40.36 ± 6.32 nM. Accordingly, a Forster resonance energy transfer aptasensor was fabricated by using the aptamer DN-2 combined with AuCu bimetallic nanoclusters as energy donor and MoS2 nanosheets as energy acceptor. Under the optimal conditions, the fluorescence response was utilized for DON quantitative determination ranging from 5 to 100 ng/mL with a detection limit of 1.87 ng/mL. The practical application of this method was verified in maize flour samples and demonstrated a satisfied recovery of 94.6 ~ 103.1%. The obtained aptamers and their application in DON determination provide a new tool for DON monitoring in various foodstuff.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Transferência Ressonante de Energia de Fluorescência/métodos , Fluorometria , Molibdênio/química , Tricotecenos
20.
Small ; 17(34): e2102263, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34269515

RESUMO

Efficient exfoliations of bulk molybdenum disulfide (MoS2 ) into few-layered nanosheets in pure phase are highly attractive because of the promising applications of the resulted 2D materials in diversified optoelectronic devices. Here, a new exfoliation method is presented to prepare semiconductive 2D hexagonal phase (2H phase) MoS2 -cellulose nanocrystal (CNC) nanocomposites using grinding-promoted intercalation exfoliation (GPIE). This method with facile grinding of the bulk MoS2 and CNC powder followed by conventional liquid-phase exfoliation in water can not only efficiently exfoliate 2H-MoS2 nanosheets, but also produce the 2H-MoS2 /CNC 2D nanocomposites simultaneously. Interestingly, the intercalated CNC sandwiched in MoS2 nanosheets increases the interlayer spacing of 2H-MoS2 , providing perfect conditions to accommodate the large-sized ions. Therefore, these nanocomposites are good anode materials of potassium-ion batteries (KIBs), showing a high reversible capacity of 203 mAh g-1 at 200 mA g-1 after 300 cycles, a good reversible capacity of 114 mAh g-1 at 500 mA g-1 , and a low decay of 0.02% per cycle over 1500 cycles. With these impressive KIB performances, this efficient GPIE method will open up a new avenue to prepare pure-phase MoS2 and promising 2D nanocomposites for high-performance device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA