Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nephrol ; 34(6): 2073-2083, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33770395

RESUMO

Renal tubular acidosis (RTA) comprises a group of disorders in which excretion of hydrogen ions or reabsorption of filtered HCO3 is impaired, leading to chronic metabolic acidosis with normal anion gap. In the current review, the focus is placed on the most common type of RTA, Type 1 RTA or Distal RTA (dRTA), which is a rare chronic genetic disorder characterized by an inability of the distal nephron to secrete hydrogen ions in the presence of metabolic acidosis. Over the years, knowledge of the molecular mechanisms behind acid secretion has improved, thereby greatly helping the diagnosis of dRTA. The primary or inherited form of dRTA is mostly diagnosed in infancy, childhood, or young adulthood, while the acquired secondary form, as a consequence of other disorders or medications, can happen at any age, although it is more commonly seen in adults. dRTA is not as "benign" as previously assumed, and can have several, highly variable long-term consequences. The present review indeed reports and summarizes both clinical symptoms and diagnosis, long-term outcomes, genetic inheritance, epidemiology and current treatment options, with the aim of shedding more light onto this rare disorder. Being a chronic condition, dRTA also deserves attention in the transition between pediatric and adult nephrology care, and as a rare disease it has a place in the European and Italian rare nephrological diseases network.


Assuntos
Acidose Tubular Renal , Equilíbrio Ácido-Base , Acidose Tubular Renal/diagnóstico , Acidose Tubular Renal/epidemiologia , Acidose Tubular Renal/terapia , Adulto , Transporte Biológico , Criança , Humanos , Adulto Jovem
2.
Front Genet ; 12: 670608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122524

RESUMO

Skeletal dysplasia (SD), a heterogeneous disease group with rare incidence and various clinical manifestations, is associated with multiple causative genes. For clinicians, accurate diagnosis of SD is clinically and genetically difficult. The development of next-generation sequencing (NGS) has substantially aided in the genetic diagnosis of SD. In this study, we conducted a targeted NGS of 437 genes - included in the nosology of SD published in 2019 - in 31 patients with a suspected SD. The clinical and genetic diagnoses were confirmed in 16 out of the 31 patients, and the diagnostic yield was 51.9%. In these patients, 18 pathogenic variants were found in 13 genes (COL2A1, MYH3, COMP, MATN3, CTSK, EBP, CLCN7, COL1A2, EXT1, TGFBR1, SMAD3, FIG4, and ARID1B), of which, four were novel variants. The diagnosis rate was very high in patients with a suspected familial SD and with radiological evidence indicating clinical SD (11 out of 15, 73.3%). In patients with skeletal involvement and other clinical manifestations including dysmorphism or multiple congenital anomalies, and various degrees of developmental delay/intellectual disability, the diagnosis rate was low (5 out of 16, 31.2%) but rare syndromic SD could be diagnosed. In conclusion, NGS-based gene panel sequencing can be helpful in diagnosing SD which has clinical and genetic heterogeneity. To increase the diagnostic yield of suspected SD patients, it is important to categorize patients based on the clinical features, family history, and radiographic evidence.

3.
BMC Med Genomics ; 14(1): 148, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092239

RESUMO

BACKGROUND: Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a heterogeneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important than ever to molecularly confirm SD conditions. Data on 'rates-of-molecular yields' in SD conditions, through exome sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (n = 54) and South Korea (n = 185) respectively. METHODS: We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics pipeline, allowed for both gene-targeted and gene-agnostic approaches. RESULTS: Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (n = 8/15) of patients; 46.7% (n = 7/15) having a definite molecular diagnosis and 6.7% (n = 1/15) having a likely molecular diagnosis. We discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known diagnoses pre-WES (n = 10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest returns. CONCLUSIONS: Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural history/mechanistic details, and likely increased therapies and clinical trials.


Assuntos
Sequenciamento do Exoma
4.
Technol Health Care ; 24 Suppl 1: S105-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26409535

RESUMO

There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.


Assuntos
Automação/instrumentação , DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Biologia Molecular/instrumentação , Desenho de Equipamento , Humanos
5.
Korean J Audiol ; 18(2): 45-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25279224

RESUMO

Hearing loss is one of the most common sensorineural disorder. More than half of congenital bilateral profound deafness cases have been estimated to be attributed to genetic cause. Identification of genetic cause can provide valuable information. We developed new diagnostic strategy combining phenotype-driven candidate gene approach and targeted exome sequencing to find out the causative mutation of hearing loss. The causative mutation detection rates of this strategy were 78.1% and 54.8% in Korean multiplex families and sporadic severe to profound hearing loss families, respectively. The most frequent causative genes of Korean multiplex families were SLC26A4 and POU3F4. The other causative genes were MRNR1, WFS1, COCH, TECTA, MYO6, COL11A2, EYA4, GJB3, OTOF, STRC, MYO3A, and GJB2. The most frequent causative gene of Korean sporadic severe to profound hearing loss families was SLC26A4 followed by GJB2, CHD7, and CDH23. Based upon the results, the value of this strategy as a diagnostic tool seems to be promising. Although whole genome and exome sequencing have advanced as the development of next-generation sequencing, this new strategy could be a good screening and diagnostic tool to find the causative mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA