Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem ; 69: 116915, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802951

RESUMO

Prostate-specific membrane antigen (PSMA), expressed in prostate cancer cells, is being investigated extensively worldwide as a target for imaging and therapy of prostate cancer. Various radioiodinated PSMA imaging probes have been developed, and their structure has a peptidomimetic urea-based skeleton as a pharmacophore. For direct radioiodination of molecules containing these peptidomimetic structures, prior studies performed radioiododestannylation or electrophilic radioiodination of tyrosine residues. However, although these radiolabeling methods are frequently used, there are some issues with precursor toxicity and by-product production. Therefore, it is required to investigate a radiolabeling method that can be used for the radiosynthesis of radioiodinated PSMA imaging probes with urea-based peptidomimetic structures. We recently reported that copper-mediated radioiodination via a boronic precursor is an effective method for directly labeling a peptide. This radiohalogenation method was expected to be an effective method for radiosynthesis of PSMA imaging probes with a peptidomimetic structure. In this study, to confirm that this labeling method applies to the synthesis of the PSMA imaging probe, we synthesized PSMA imaging probes labeled with 125I and 77Br ([125I]mIB-PS and [77Br]mBrB-PS) using a copper-mediated radiohalogenation via common boronic precursors and investigated optimal boronic precursor and labeling conditions. As a result, the radiochemical yields of [125I]mIB-PS and [77Br]mBrB-PS were improved to > 93% at room temperature by optimizing the structure of the boronic precursor. We demonstrate that copper-mediated nucleophilic radiochemistry using a boronic precursor is a promising radiosynthetic method of PSMA imaging probes. Although we focused on the synthesis of PSMA imaging probes, the results in this study will also be useful for the synthesis of various radioiodine or radiobromine-labeled bioactive molecules.


Assuntos
Peptidomiméticos , Neoplasias da Próstata , Antígenos de Superfície , Boro , Linhagem Celular Tumoral , Cobre , Glutamato Carboxipeptidase II , Humanos , Radioisótopos do Iodo , Masculino , Tomografia por Emissão de Pósitrons , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Ureia
2.
Angew Chem Int Ed Engl ; 61(9): e202114594, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34921480

RESUMO

To reveal the biomedical effects and mechanisms of hydrogen molecules urgently needs hydrogen molecular imaging probes as an imperative tool, but the development of these probes is extremely challenging. A catalytic hydrogenation strategy is proposed to design and synthesize a ratiometric fluorescent probe by encapsulating Pd nanoparticles and conjugating azido-/coumarin-modified fluorophore into mesoporous silica nanoparticles, realizing in vitro and in vivo fluorescence imaging of hydrogen molecules. The developed hydrogen probe exhibits high sensitivity, rapid responsivity, high selectivity and low detection limit, enabling rapid and real-time detection of hydrogen molecules both in cells and in the body of animal and plant. By application of the developed fluorescent probe, we have directly observed the super-high transmembrane and ultrafast transport abilities of hydrogen molecules in cells, animals and plants, and discovered in vivo high diffusion of hydrogen molecules.


Assuntos
Corantes Fluorescentes/química , Hidrogênio/análise , Imagem Molecular , Animais , Azidas/química , Cumarínicos/química , Corantes Fluorescentes/síntese química , Humanos , Paládio/química , Dióxido de Silício/química , Fatores de Tempo
3.
Bioorg Med Chem ; 28(2): 115240, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843463

RESUMO

CXCR4 is involved in various diseases such as inflammation, tumor growth, and cancer metastasis through the interaction with its natural endogenous ligand, chemokine CXCL12. In an effort to develop imaging probes for CXCR4, we developed a novel small molecule CXCR4-targeted PET agent (compound 5) by combining our established benzenesulfonamide scaffold with a labeling component by virtue of click chemistry. 5 shows nanomolar affinity (IC50 = 6.9 nM) against a known CXCR4 antagonist (TN14003) and inhibits more than 65% chemotaxis at 10 nM in vitro assays. Radiofluorinated compound 5 ([18F]5) demonstrates a competitive cellular uptake against CXCL12 in a dose-dependent manner. Further, microPET images of [18F]5 exhibits preferential accumulation of radioactivity in the lesions of λ-carrageenan-induced paw edema, human head and neck cancer orthotopic xenograft, and metastatic lung cancer of each mouse model.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Carragenina/administração & dosagem , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injeções Subcutâneas , Ligantes , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Distribuição Tecidual , Benzenossulfonamidas
4.
Radiol Imaging Cancer ; 6(2): e230056, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426887

RESUMO

Purpose To characterize the metabolomic profiles of two hepatocellular carcinoma (HCC) rat models, track evolution of these profiles to a stimulated tumor state, and assess their effect on lactate flux with hyperpolarized (HP) carbon 13 (13C) MRI. Materials and Methods Forty-three female adult Fischer rats were implanted with N1S1 or McA-RH7777 HCC tumors. In vivo lactate-to-pyruvate ratio (LPR) was measured with HP 13C MRI at 9.4 T. Ex vivo mass spectrometry was used to measure intratumoral metabolites, and Ki67 labeling was used to quantify proliferation. Tumors were first compared with three normal liver controls. The tumors were then compared with stimulated variants via off-target hepatic thermal ablation treatment. All comparisons were made using the Mann-Whitney test. Results HP 13C pyruvate MRI showed greater LPR in N1S1 tumors compared with normal liver (mean [SD], 0.564 ± 0.194 vs 0.311 ± 0.057; P < .001 [n = 9]), but not for McA-RH7777 (P = .44 [n = 8]). Mass spectrometry confirmed that the glycolysis pathway was increased in N1S1 tumors and decreased in McA-RH7777 tumors. The pentose phosphate pathway was also decreased only in McA-RH7777 tumors. Increased proliferation in stimulated N1S1 tumors corresponded to a net increase in LPR (six stimulated vs six nonstimulated, 0.269 ± 0.148 vs 0.027 ± 0.08; P = .009), but not in McA-RH7777 (eight stimulated vs six nonstimulated, P = .13), despite increased proliferation and metastases. Mass spectrometry demonstrated relatively increased lactate production with stimulation in N1S1 tumors only. Conclusion Two HCC subtypes showed divergent glycolytic dependency at baseline and during transformation to a high proliferation state. This metabolic heterogeneity in HCC should be considered with use of HP 13C MRI for diagnosis and tracking. Keywords: Molecular Imaging-Probe Development, Liver, Abdomen/GI, Oncology, Hepatocellular Carcinoma © RSNA, 2024 See also commentary by Ohliger in this issue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Feminino , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética , Ratos Endogâmicos F344 , Lactatos
5.
Nanomaterials (Basel) ; 12(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35214911

RESUMO

Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.

6.
Reprod Sci ; 27(2): 644-654, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31925772

RESUMO

Leiomyosarcoma is the most frequent subtype of the deadly uterine sarcoma and shares many common clinical grounds with leiomyoma, which is in turn the most common solid benign uterine neoplasm. With the recent progress in minimally invasive techniques for managing leiomyomas, accurate preoperative diagnosis of uterine masses has become the most important selection criterion for the safest therapeutic option. Therefore, different imaging modalities would be playing a key role in management of uterine masses. Testing for a sarcoma-specific promoter that expresses its downstream reporter gene only in leiomyosarcoma and not in leiomyoma or healthy uterine tissue. Adenoviral vectors were utilized both in vitro and in vivo to test the specificity of the promoters. Quantitative studies of downstream gene expression of these promoters was carried out both in vitro and in vivo. Our data indicated that human leiomyosarcoma cells highly expressed the reporter gene downstream to survivin promoter (Ad-SUR-LUC) when compared with benign leiomyoma or normal cells (p value of 0.05). Our study suggested that survivin is the unique promoter capable of distinguishing between the deadly sarcoma and the benign counterparts.


Assuntos
Leiomioma/diagnóstico por imagem , Leiomiossarcoma/diagnóstico por imagem , Técnicas de Sonda Molecular , Neoplasias Uterinas/diagnóstico por imagem , Adenoviridae/fisiologia , Biomarcadores Tumorais/genética , Feminino , Expressão Gênica , Genes Reporter , Humanos , Leiomioma/genética , Leiomiossarcoma/genética , Sondas Moleculares , Regiões Promotoras Genéticas , Transfecção , Neoplasias Uterinas/genética
7.
J Zhejiang Univ Sci B ; 20(11): 865-867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595722

RESUMO

Positron emission tomography (PET) is a powerful non-invasive molecular imaging technique for the early detection, characterization, and "real-time" monitoring of disease, and for investigating the efficacy of drugs (Phelps, 2000; Ametamey et al., 2008). The development of molecular probes bearing short-lived positron-emitting radionuclides, such as 18F (half-life 110 min) or 11C (half-life 20 min), is crucial for PET imaging to collect in vivo metabolic information in a time-efficient manner (Deng et al., 2019). In this regard, one of the main challenges is rapid synthesis of radiolabeled probes by introducing the radionuclides into pharmaceuticals as soon as possible before injection for a PET scan. Although many potential PET probes have been discovered, only a handful can satisfy the demand for a highly efficient synthesis procedure that achieves radiolabeling and delivery for imaging within 1-2 radioisotope half-lives. Only a few probes, such as 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and [18F]fluorodopa, are routinely produced on a commercial scale for daily clinical diagnosis (Grayson et al., 2018; Carollo et al., 2019).


Assuntos
Dispositivos Lab-On-A-Chip , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Compostos Radiofarmacêuticos/síntese química , Extração em Fase Sólida
8.
Curr Top Med Chem ; 19(16): 1445-1463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31284861

RESUMO

Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer's disease, and Parkinson's disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.


Assuntos
Doenças Autoimunes/metabolismo , Doenças Cardiovasculares/metabolismo , Inflamação/metabolismo , Doenças do Sistema Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Receptores Purinérgicos P1/análise , Animais , Doenças Autoimunes/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Humanos , Inflamação/diagnóstico por imagem , Sondas Moleculares/química , Doenças do Sistema Nervoso/diagnóstico por imagem
9.
Theranostics ; 6(12): 2084-2098, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27698942

RESUMO

Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug sunitinib in U87MG tumors, using noninvasive positron emission computed tomography (PET) molecular imaging strategies of multifactorial bioparameters. Methods: U87MG tumor mice were treated via intragastric injections of sunitinib (80 mg/kg) or vehicle for 7 consecutive days. Longitudinal MicroPET/CT scans with 18F-FDG, 18F-FMISO, 18F-ML-10 and 18F-Alfatide II were acquired to quantitatively measure metabolism, hypoxia, apoptosis and angiogenesis on days 0, 1, 3, 7 and 13 following therapy initiation. Tumor tissues from a dedicated group of mice were collected for immunohistochemical (IHC) analysis of key biomarkers (Glut-1, CA-IX, TUNEL, ανß3 and CD31) at the time points of PET imaging. The tumor sizes and mouse weights were measured throughout the study. The tumor uptake (ID%/gmax), the ratios of the tumor/muscle (T/M) for each probe, and the tumor growth ratios (TGR) were calculated and used for statistical analyses of the differences and correlations. Results: Sunitinib successfully inhibited U87MG tumor growth with significant differences in the tumor size from day 9 after sunitinib treatment compared with the control group (P < 0.01). The uptakes of 18F-FMISO (reduced hypoxia), 18F-ML-10 (increased apoptosis) and 18F-Alfatide II (decreased angiogenesis) in the tumor lesions significantly changed during the early stage (days 1 to 3) of sunitinib treatment; however, the uptake of 18F-FDG (increased glucose metabolism) was significantly different during the late stage. The PET imaging data of each probe were all confirmed via ex vivo IHC of the relevant biomarkers. Notably, the PET imaging of 18F-Alfatide II and 18F-FMISO was significantly correlated (all P < 0.05) with TGR, whereas the imaging of 18F-FDG and 18F-ML-10 was not significantly correlated with TGR. Conclusion: Based on the tumor uptake of the PET probes and their correlations with MVD and TGR, 18F-Alfatide II PET may not only monitor the early response but also precisely predict the therapeutic efficacy of the multi-targeted, anti-angiogenic drug sunitinib in U87MG tumors. In conclusion, it is feasible to optimize the early response monitoring and efficacy prediction of cancer AAT using noninvasive PET molecular imaging strategies of multifactorial bioparameters, such as angiogenesis imaging with 18F-Alfatide II, which represents an RGD-based probe.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Monitoramento de Medicamentos/métodos , Glioblastoma/diagnóstico por imagem , Indóis/administração & dosagem , Imagem Molecular/métodos , Neovascularização Patológica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Pirróis/administração & dosagem , Animais , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Xenoenxertos , Estudos Longitudinais , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Prognóstico , Sunitinibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA