Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053971

RESUMO

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Assuntos
Autoantígenos/imunologia , Bacteroides/imunologia , Colite/imunologia , Microbioma Gastrointestinal , Glucose-6-Fosfatase/imunologia , Adulto , Animais , Bacteroides/classificação , Bacteroides/enzimologia , Colite/microbiologia , Feminino , Glucose-6-Fosfatase/genética , Humanos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mimetismo Molecular , Linfócitos T/imunologia
2.
Immunity ; 52(2): 388-403.e12, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32023489

RESUMO

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Quimioterapia Combinada , Epitopos , Feminino , Glicoproteínas/química , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mimetismo Molecular , Conformação Proteica
3.
Trends Immunol ; 45(9): 639-648, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181734

RESUMO

The mammalian intestine harbors abundant T cells with high motility, where these cells can affect both intestinal and extraintestinal disorders. Growing evidence shows that gut-derived T cells migrate to extraintestinal organs, contributing to the pathogenesis of certain autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). However, three key questions require further elucidation. First, how do intestinal T cells egress from the intestine? Second, how do gut-derived T cells enter organs outside the gut? Third, what is the pathogenicity of gut-derived T cells and their correlation with the gut microenvironment? In this Opinion, we propose answers to these questions. Understanding the migration and functional regulation of gut-derived T cells might inform precise targeting for achieving safe and effective approaches to treat certain extraintestinal autoimmune diseases.


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Linfócitos T/imunologia , Mucosa Intestinal/imunologia , Movimento Celular/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Intestinos/imunologia
4.
Semin Cell Dev Biol ; 165: 1-12, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079455

RESUMO

In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.

5.
Mol Cell Proteomics ; 23(5): 100747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490531

RESUMO

Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.


Assuntos
Galectina 4 , Humanos , Galectina 4/metabolismo , Domínios Proteicos , Ligação Proteica , Multimerização Proteica , Antígenos de Grupos Sanguíneos/metabolismo , Escherichia coli/metabolismo , Anti-Infecciosos/farmacologia , Sistema ABO de Grupos Sanguíneos/metabolismo , Sistema ABO de Grupos Sanguíneos/imunologia
6.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574644

RESUMO

Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein ß2-microglobulin (ß2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8+ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of ß2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , SARS-CoV-2 , Proteínas Virais Reguladoras e Acessórias , Humanos , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA , Peptídeos , SARS-CoV-2/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(11): e2220677120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888659

RESUMO

Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.


Assuntos
Mimetismo Molecular , Vitamina B 12 , Humanos , Oxirredução , Difosfato de Adenosina/metabolismo , Vitamina B 12/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(30): e2306572120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463205

RESUMO

Aquaporin-4 (AQP4)-specific Th17 cells are thought to have a central role in neuromyelitis optica (NMO) pathogenesis. When modeling NMO, only AQP4-reactive Th17 cells from AQP4-deficient (AQP4-/-), but not wild-type (WT) mice, caused CNS autoimmunity in recipient WT mice, indicating that a tightly regulated mechanism normally ensures tolerance to AQP4. Here, we found that pathogenic AQP4 T cell epitopes bind MHC II with exceptionally high affinity. Examination of T cell receptor (TCR) α/ß usage revealed that AQP4-specific T cells from AQP4-/- mice employed a distinct TCR repertoire and exhibited clonal expansion. Selective thymic AQP4 deficiency did not fully restore AQP4-reactive T cells, demonstrating that thymic negative selection alone did not account for AQP4-specific tolerance in WT mice. Indeed, AQP4-specific Th17 cells caused paralysis in recipient WT or B cell-deficient mice, which was followed by complete recovery that was associated with apoptosis of donor T cells. However, donor AQP4-reactive T cells survived and caused persistent paralysis in recipient mice deficient in both T and B cells or mice lacking T cells only. Thus, AQP4 CNS autoimmunity was limited by T cell-dependent deletion of AQP4-reactive T cells. In contrast, myelin oligodendrocyte glycoprotein (MOG)-specific T cells survived and caused sustained disease in WT mice. These findings underscore the importance of peripheral T cell deletional tolerance to AQP4, which may be relevant to understanding the balance of AQP4-reactive T cells in health and in NMO. T cell tolerance to AQP4, expressed in multiple tissues, is distinct from tolerance to MOG, an autoantigen restricted in its expression.


Assuntos
Autoimunidade , Neuromielite Óptica , Animais , Camundongos , Aquaporina 4/metabolismo , Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Paralisia , Receptores de Antígenos de Linfócitos T/metabolismo
9.
Int Immunol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066568

RESUMO

Glomerulonephritis (GN) is a group of heterogeneous immune-mediated kidney diseases that causes inflammation within the glomerulus. Autoantibodies (auto-Abs) are considered to be central effectors in the pathogenesis of several types of GN. IgA nephropathy (IgAN) is the most common GN worldwide and is characterized by deposition of IgA in the glomerular mesangium of the kidneys, which is thought to be mediated by immune complexes containing non-specific IgA. However, we recently reported that IgA auto-Abs specific to mesangial cells (anti-mesangium IgA) were found in the sera of gddY mice, a spontaneous IgAN model, and patients with IgAN. We identified two autoantigens (ß2-spectrin and CBX3) that are selectively expressed on the mesangial cell surface and targeted by anti-mesangial IgA. Our findings redefined IgAN as a tissue-specific autoimmune disease. Regarding the mechanisms of production of anti-mesangium IgA, studies using gddY mice have revealed that production of anti-CBX3 IgA is induced by particular strains of commensal bacteria in the oral cavity, possibly through their molecular mimicry to CBX3. Here, we discuss a new concept of IgAN pathogenesis from the perspective of this disease as autoimmune GN caused by tissue-specific auto-Abs.

10.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878027

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Mimetismo Molecular , Peptídeos , Animais , Autoanticorpos/imunologia , Bacteroidetes , Linfócitos T CD8-Positivos , Criança , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Insulina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA