Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545292

RESUMO

Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive. Here, we show that Sal, similar to monensin and nigericin, disturbs the function of the Golgi. Sal alters the expression of Golgi-related genes and leads to marked changes in Golgi morphology, particularly in cells that have undergone EMT. Moreover, Golgi-disturbing agents severely affect post-translational modifications of proteins, including protein processing, glycosylation and secretion. We discover that the alterations induced by Golgi-disturbing agents specifically affect the viability of EMT cells. Collectively, our work reveals a novel vulnerability related to the EMT, suggesting an important role for the Golgi in the EMT and that targeting the Golgi could represent a novel therapeutic approach against CSCs.


Assuntos
Transição Epitelial-Mesenquimal , Piranos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Piranos/farmacologia , Piranos/metabolismo , Piranos/uso terapêutico , Complexo de Golgi , Células-Tronco Neoplásicas/metabolismo
2.
Exp Cell Res ; : 114257, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293524

RESUMO

Gastric cancer represents a serious health problem worldwide, with insufficient molecular biomarkers and therapeutic options. Consequently, several efforts have been directed towards finding specific disease markers in order to develop new therapies capable of defeating gastric cancer. Attention has been pointed to cancer stem cells (CSCs) as they are primarily responsible for tumor initiation and recurrence, making them essential therapeutic targets. Using the SORE6-GFP reporter system, based on the expression of SOX2 and/or OCT4 to drive GFP expression, we isolated gastric cancer stem-like cells (SORE6+ cells) enriched in several molecules, including SOX2, C-MYC, KLF4, HIF-1α, NOTCH1 and HMGA1. Here, we explored the previously undisclosed link of HMGA1 with gastric CSCs. Our results indicated that HMGA1 can activate a transcriptional program that includes SOX2, C-MYC, and KLF4 and endows cells with CSC features. We further showed that chemical induction of gastric CSCs using ciclopirox (CPX) can be mediated by HMGA1. Finally, we showed that HMGA1 GFP+ cells were sensitive to monensin confirming the selective activity of this drug over CSCs. Thus, HMGA1 is a key player in the cellular reprogramming of gastric non-CSCs to cancer stem-like cells.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38906273

RESUMO

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.

4.
Breast Cancer Res Treat ; 207(2): 435-451, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38958784

RESUMO

BACKGROUND: Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS: The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS: The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS: The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.


Assuntos
Proliferação de Células , Sinergismo Farmacológico , Receptores ErbB , Cloridrato de Erlotinib , Monensin , Células-Tronco Neoplásicas , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Feminino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Monensin/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camundongos Nus
5.
J Sep Sci ; 47(4): e2300761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403454

RESUMO

The combination of ionophoric coccidiostats and amino acids (AAs) is important in poultry feeding to enhance immunity and improve the growth and feed efficiency of birds suffering from coccidiosis. A simple, rapid, and economical high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method for the simultaneous determination of three ionophoric coccidiostats, namely salinomycin (SAL), maduramicin (MAD), and monensin (MON) in addition to three AAs; L-tryptophan (L-TRP), alpha-ketoleucin (KLEU), and L-valine (L-VAL) in feed premixes was developed and validated. Chromatographic separation was achieved in less than 12 min using a phenyl hexyl column with a mobile phase consisting of acetonitrile/methanol/water (25:20:55, v/v/v) adjusted to pH 3 using phosphoric acid. Isocratic elution was performed at a flow rate of 1 mL/min with UV detection at 210 nm. The method showed good linearity in the ranges 0.50-5.0 mg/mL for MON, 0.20-2.0 mg/mL for MAD and SAL, 10.0-100.0 µg/mL for L-TRP and KLEU, and 50.0-500.0 µg/mL for VAL. The developed method was successfully applied to determine the studied analytes in feed premixes with good recoveries and precision. The good validation criteria of the proposed method allow its utilization in quality control laboratories.


Assuntos
Coccidiostáticos , Coccidiostáticos/análise , Cromatografia Líquida de Alta Pressão , Ionóforos/análise , Aminoácidos , Monensin/análise
6.
J Dairy Sci ; 107(1): 607-624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709041

RESUMO

To investigate the effects of supplemental monensin administration on the metabolic responses of dairy cows, a systematic review and dose-response meta-analysis were conducted. Initially, 604 studies were identified through comprehensive database searches, including Google Scholar, Scopus, Science Direct, and PubMed, using key words related to dairy cows, monensin, and metabolic outcomes. After a 2-stage screening process, 51 articles with a total of 60 experiments were selected for meta-analysis based on criteria such as study implementation date between 2001 and 2022, presence of a control group that did not receive monensin supplementation, reporting of at least 1 outcome variable, and presentation of means and corresponding errors. The meta-analysis used the 1-stage random-effects method, and sensitivity analyses were performed to assess the robustness of the results. The results showed that the administration of monensin at a dosage of 19 to 26 mg/kg was inversely related to methane emissions and that the administration of monensin at a dosage of 18 to 50 mg/kg resulted in a significant decrease in dry matter intake. Administration of monensin at doses of 13 to 28 and 15 to 24 mg/kg also resulted in a significant decrease in ruminal acetate proportion and an increase in propionate proportion, respectively, with no effects on ruminal butyrate, NH3, or pH levels. We found no effects on blood parameters or nitrogen retention, but a significant negative correlation was observed between monensin supplementation and fecal nitrogen excretion. Based on the analysis of all variables evaluated, the optimal dose range of monensin was estimated to be 19 to 24 mg/kg.


Assuntos
Leite , Monensin , Feminino , Bovinos , Animais , Leite/química , Fermentação , Metano/metabolismo , Rúmen/metabolismo , Nitrogênio/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Lactação/fisiologia
7.
J Dairy Sci ; 107(3): 1441-1449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806628

RESUMO

Since the US Food and Drug Administration's approval of monensin in 2004, significant nutritional advances have been made to increase feed efficiency and milk fat production. Recent evidence suggests monensin's adverse effect on milk fat percentage may be absent when diets are formulated to address known diet-induced milk fat depression risk factors. Thus, study objectives were to evaluate effects of monensin level on dry matter intake (DMI), milk production and composition, and efficiency of high-producing cows fed diets formulated to optimize milk fat. Ninety-six lactating Holstein cows (36 primiparous, 60 multiparous; 106 ± 17 d in milk [DIM]) were balanced by parity, DIM, and milk production and were randomly assigned to 1 of 12 pens with 8 cows per pen. All cows received 11 g/t monensin for 5 wk after which pens received 1 of 4 dietary treatments (n = 3) formulated to provide 0 (CON), 11 (R11), 14.5 (R14.5), or 18 (R18) g/t monensin for 9 wk. The basal diet was 54% forage, 27% NDF, 29% starch, and 2.3% rumen unsaturated fatty acid load. Pen was the experimental unit and data were analyzed using the Fit Model Procedure of JMP. Effects of treatment, time, and treatment × time interaction were included as fixed effects and pen as a random effect. Least squares means were determined and linear and quadratic contrasts were tested. Dry matter intake tended to decrease linearly with increasing monensin dose. Milk yield, fat percentage, and protein percentage and yield were unaffected by treatment while fat yield was quadratically increased. Milk de novo and mixed fatty acid (FA) yields (g/d) increased quadratically with monensin whereas preformed FA linearly decreased during the experimental period. Energy-corrected milk (ECM) was quadratically increased by monensin. Milk urea nitrogen concentrations increased linearly with increasing monensin dose. Monensin linearly increased feed efficiency (ECM/DMI, 3.5% fat-corrected milk/DMI, and solids-corrected milk/DMI). Body weight gain did not differ between treatments. Estimated dietary energy tended to increase linearly with increasing monensin level. These data suggest monensin improves component-corrected milk production efficiency, estimated dietary energy, and does not negatively affect milk fat percentage or FA profile.


Assuntos
Leite , Monensin , Feminino , Gravidez , Bovinos , Animais , Monensin/farmacologia , Lactação , Dieta/veterinária , Ingestão de Energia , Ácidos Graxos , Rúmen , Ração Animal , Suplementos Nutricionais , Digestão
8.
J Allergy Clin Immunol ; 152(5): 1312-1320.e3, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536509

RESUMO

BACKGROUND: Eosinophils contribute to the pathology of several types of disorders, in particular of allergic nature, and strategies to limit their actions are therefore warranted. OBJECTIVE: We sought to evaluate the possibility of targeting the acidic, lysosome-like eosinophil granules as a potential means of inducing eosinophil cell death. METHODS: To this end, we used monensin, an ionophoric drug that has previously been shown to permeabilize the secretory granules of mast cells, thereby inducing cell death. RESULTS: Our findings reveal that monensin induces cell death in human eosinophils, whereas neutrophils were less affected. Blockade of granule acidification reduced the effect of monensin on the eosinophils, demonstrating that granule acidity is an important factor in the mechanism of cell death. Furthermore, monensin caused an elevation of the granule pH, which was accompanied by a decrease of the cytosolic pH, hence indicating that monensin caused leakage of acidic contents from the granules into the cytosol. In agreement with a granule-targeting mechanism, transmission electron microscopy analysis revealed that monensin caused extensive morphological alterations of the eosinophil granules, as manifested by a marked loss of electron density. Eosinophil cell death in response to monensin was caspase-independent, but dependent on granzyme B, a pro-apoptotic serine protease known to be expressed by eosinophils. CONCLUSIONS: We conclude that monensin causes cell death of human eosinophils through a granule-mediated mechanism dependent on granzyme B.


Assuntos
Eosinófilos , Monensin , Humanos , Monensin/farmacologia , Monensin/metabolismo , Granzimas/metabolismo , Granzimas/farmacologia , Vesículas Secretórias/metabolismo , Grânulos Citoplasmáticos
9.
Vet Clin North Am Equine Pract ; 40(1): 161-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37696707

RESUMO

Ionophores are a class of polyether antibiotics that are commonly used as anticoccidial agents and growth promotants in ruminant diets. Ionophores transport ions across lipid membranes and down concentration gradients, which results in mitochondrial destruction, reduced cellular energy production, and ultimately cell death. Cardiomyocytes are the primary target in equine patients when exposed to toxic concentrations and the clinical disease syndrome is related to myocardial damage. Animals can survive acute exposures but can have permanent heart damage that may result in acute death at future time points. Animals that survive a poisoning incident may live productive breeding lives, but physical performance can be greatly impacted. Animals with myocardial damage are at risk of sudden death and pose a risk to riders.


Assuntos
Doenças dos Cavalos , Humanos , Animais , Cavalos , Ionóforos/farmacologia , Dieta
10.
Korean J Physiol Pharmacol ; 28(1): 21-30, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154961

RESUMO

The challenging clinical outcomes associated with advanced cervical cancer underscore the need for a novel therapeutic approach. Monensin, a polyether antibiotic, has recently emerged as a promising candidate with anti-cancer properties. In line with these ongoing efforts, our study presents compelling evidence of monensin's potent efficacy in cervical cancer. Monensin exerts a pronounced inhibitory impact on proliferation and anchorage-independent growth. Additionally, monensin significantly inhibited cervical cancer growth in vivo without causing any discernible toxicity in mice. Mechanism studies show that monensin's anti-cervical cancer activity can be attributed to its capacity to inhibit the Wnt/ß-catenin pathway, rather than inducing oxidative stress. Monensin effectively reduces both the levels and activity of ß-catenin, and we identify Akt, rather than CK1, as the key player involved in monensin-mediated Wnt/ß-catenin inhibition. Rescue studies using Wnt activator and ß-catenin-overexpressing cells confirmed that ß-catenin inhibition is the mechanism of monensin's action. As expected, cervical cancer cells exhibiting heightened Wnt/ß-catenin activity display increased sensitivity to monensin treatment. In conclusion, our findings provide pre-clinical evidence that supports further exploration of monensin's potential for repurposing in cervical cancer therapy, particularly for patients exhibiting aberrant Wnt/ß-catenin activation.

11.
Proteomics ; 23(21-22): e2200121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36444514

RESUMO

The time-resolved impact of monensin on the active rumen microbiome was studied in a rumen-simulating technique (Rusitec) with metaproteomic and metabolomic approaches. Monensin treatment caused a decreased fibre degradation potential that was observed by the reduced abundance of proteins assigned to fibrolytic bacteria and glycoside hydrolases, sugar transporters and carbohydrate metabolism. Decreased proteolytic activities resulted in reduced amounts of ammonium as well as branched-chain fatty acids. The family Prevotellaceae exhibited increased resilience in the presence of monensin, with a switch of the metabolism from acetate to succinate production. Prevotella species harbour a membrane-bound electron transfer complex, which drives the reduction of fumarate to succinate, which is the substrate for propionate production in the rumen habitat. Besides the increased succinate production, a concomitant depletion of methane concentration was observed upon monensin exposure. Our study demonstrates that Prevotella sp. shifts its metabolism successfully in response to monensin exposure and Prevotellaceae represents the key bacterial family stabilizing the rumen microbiota during exposure to monensin.


Assuntos
Microbiota , Monensin , Animais , Monensin/farmacologia , Monensin/metabolismo , Ácido Succínico/metabolismo , Prevotella/metabolismo , Bactérias/metabolismo , Succinatos/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia , Fermentação , Dieta
12.
Small ; 19(11): e2204747, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585358

RESUMO

As the foremost cause of cancer-related death, metastasis consists of three steps: invasion, circulation, and colonization. Only targeting one single phase of the metastasis cascade may be insufficient since there are many alternative routes for tumor cells to disseminate. Here, to target the whole cascade of metastasis, hybrid erythrocyte and tumor cell membrane-coated nanoparticle (Hyb-NP) is designed with dual functions of increasing circulation time and recognizing primary, circulating, and colonized tumors. After loading with monensin, a recently reported metastasis inhibitor, the delivery system profoundly reduces spontaneous metastasis in an orthotopic breast cancer model. Underlying mechanism studies reveal that Hyb-NP can deliver monensin to its action site in the Golgi apparatus, and in return, monensin can block the exocytosis of Hyb-NP from the Golgi apparatus, forming a reservoir-like subcellular structure. Notably, the Golgi apparatus reservoir displays three vital functions for suppressing metastasis initialization, including enhanced subcellular drug retention, metastasis-related cytokine release inhibition, and directional migration inhibition. Collectively, based on metastasis cascade targeting at the tissue level, further formation of the Golgi apparatus drug reservoir at the subcellular level provides a potential therapeutic strategy for cancer metastasis suppression.


Assuntos
Monensin , Neoplasias , Humanos , Monensin/farmacologia , Complexo de Golgi/ultraestrutura , Citoplasma
13.
Immunopharmacol Immunotoxicol ; 45(1): 35-42, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36043455

RESUMO

OBJECTIVE: Uveal melanoma (UM) is the common primary cancer of the eye and new treatments are needed. Substantial evidence has shown that an antibiotic monensin is an attractive candidate for the development of anti-cancer drug. In this study, we investigated the potential of repositioning monensin for the treatment of UM in the pre-clinical setting. MATERIALS AND METHODS: Cellular activity assays were performed using multiple cell lines representing UM models with different cellular origins and genetic profiling and normal cells as control. Combination studies were performed using Chou-Talalay method. Mechanism studies were performed using immunoblotting and ELISA. RESULTS: Monensin was effective against all tested UM cell lines and less effective against normal fibroblast cells. Monensin induced G0/G1 arrest and thus decreased S phase, leading to UM cell growth inhibition. It also inhibited migration and induced apoptosis in UM cells. In addition, the combination of monensin and dacarbazine was synergistic in targeting UM cells. Our mechanistic studies showed that monensin specifically decreased activity of RhoA without affecting other small GTPases, such as Ras and Rac1. Consistently, monensin decreased phosphorylation of downstream effectors of RhoA signaling, including ROCK, MYPT1 and MLC. Rescue studies using RhoA activator calpeptin showed that calpeptin significantly abolished the inhibitory effects of monensin on RhoA activity, proliferation, migration and survival, confirming that RhoA is the target of monensin in UM cells. CONCLUSIONS: Our study demonstrates that monensin is a potent inhibitor of UM and synergizes with chemotherapy, via suppressing RhoA activity and RhoA-mediated signaling. Our findings suggest that monensin may be a potential lead compound for further development into a drug for UM treatment.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Monensin/farmacologia , Monensin/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Apoptose , Proliferação de Células , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/farmacologia , Proteína rhoA de Ligação ao GTP/uso terapêutico
14.
Nano Lett ; 22(3): 1415-1424, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35072479

RESUMO

The current state of antitumor nanomedicines is severely restricted by poor penetration in solid tumors. It is indicated that extracellular vesicles (EVs) secreted by tumor cells can mediate the intercellular transport of antitumor drug molecules in the tumor microenvironment. However, the inefficient generation of EVs inhibits the application of this approach. Herein, we construct an EV-mediated self-propelled liposome containing monensin as the EV secretion stimulant and photosensitizer pyropheophorbide-a (PPa) as a therapeutic agent. Monensin and PPa are first transferred to the tumor plasma membrane with the help of membrane fusogenic liposomes. By hitchhiking EVs secreted by the outer tumor cells, both drugs are layer-by-layer transferred into the deep region of a solid tumor. Particularly, monensin, serving as a sustainable booster, significantly amplifies the EV-mediated PPa penetration by stimulating EV production. Our results show that this endogenous EV-driven nanoplatform leads to deep tumor penetration and enhanced phototherapeutic efficacy.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Lipossomos/metabolismo , Monensin/metabolismo , Monensin/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Microambiente Tumoral
15.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375231

RESUMO

The largely uncharted complexation chemistry of the veterinary polyether ionophores, monensic and salinomycinic acids (HL) with metal ions of type M4+ and the known antiproliferative potential of antibiotics has provoked our interest in exploring the coordination processes between MonH/SalH and ions of Ce4+. (1) Methods: Novel monensinate and salinomycinate cerium(IV)-based complexes were synthesized and structurally characterized by elemental analysis, a plethora of physicochemical methods, density functional theory, molecular dynamics, and biological assays. (2) Results: The formation of coordination species of a general composition [CeL2(OH)2] and [CeL(NO3)2(OH)], depending on reaction conditions, was proven both experimentally and theoretically. The metal(IV) complexes [CeL(NO3)2(OH)] possess promising cytotoxic activity against the human tumor uterine cervix (HeLa) cell line, being highly selective (non-tumor embryo Lep-3 vs. HeLa) compared to cisplatin, oxaliplatin, and epirubicin.


Assuntos
Cério , Monensin , Humanos , Monensin/farmacologia , Monensin/química , Cério/farmacologia , Ionóforos/química , Íons
16.
Trop Anim Health Prod ; 55(2): 125, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944810

RESUMO

This study aimed to evaluate the effects of calcium propionate (PrCa), PrCa + monensin sodium (PrCa + Mon), and PrCa + Saccharomyces cerevisiae (PrCa + Sc) on the productive performance of Holstein steers. Twenty-four Holstein steers (270.0 ± 25.85 kg) were distributed individually into four treatments of six replicates. The treatments were control (no additives), PrCa (10 g/kg), PrCa + Mon (10 g/kg + 30 mg/kg), and PrCa + Sc (10 g/kg + 12.8 × 109 cfu). The steers were fed for 43 days, and afterwards, nutrient intake and digestibility as well as volatile fatty acids were determined, while the weight gained, feed efficiency, and CH4 production were calculated. Diet of PrCa + Sc had the highest (P < 0.0001) acid detergent fiber intake and propionate acid as well as the nutrient digestibility, with lowest (P < 0.0001) rumen acetic acid, methane, and protozoa concentration versus other diets. In conclusion, dietary inclusion of PrCa + Sc (10 g/kg + 12.8 × 109 cfu) improved nutrient digestibility, rumen fermentation, and reduced methane emission, thereby enhancing the possibility of ecofriendly ruminant farming.


Assuntos
Suplementos Nutricionais , Monensin , Animais , Monensin/farmacologia , Saccharomyces cerevisiae , Propionatos/metabolismo , Rúmen/metabolismo , Fermentação , Digestão , Dieta , Metano/metabolismo , Ração Animal/análise
17.
Pharmacol Res ; 175: 105861, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464677

RESUMO

With the rapid development of nanotechnology, organelle-targeted nano drug delivery systems (NDDSs) have emerged as a potential method which can transport drugs specifically to the subcellular compartments like nucleus, mitochondrion, lysosome, endoplasmic reticulum (ER) and Golgi apparatus (GA). GA not only plays a key role in receiving, modifying, packaging and transporting proteins and lipids, but also contributes to a set of cellular processes. Golgi-targeted NDDSs can alter the morphology of GA and will become a promising strategy with high specificity, low-dose administration and decreased occurrence of side effects. In this review, Golgi-targeted NDDSs and their applications in disease therapies and diagnosis such as cancer, metastasis, fibrosis and neurological diseases are introduced. Meanwhile, modifications of NDDSs to achieve targeting strategies, Golgi-disturbing agents to change the morphology of GA, special endocytosis to achieve endosomal/lysosomal escape strategies are also involved.


Assuntos
Complexo de Golgi , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Endocitose , Humanos
18.
Environ Sci Technol ; 56(12): 7883-7894, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35593893

RESUMO

Antibiotics could enter farmlands through sewage irrigation or manure application, causing combined pollution with pesticides. Antibiotics may affect the environmental fate of pesticides and even increase their bioavailability. In this study, the influence of monensin on the degradation, toxicity, and availability of atrazine in soil-earthworm microcosms was investigated. Monensin inhibited the degradation of atrazine, changed the metabolite patterns in soil, and increased the bioavailability of atrazine in earthworms. Atrazine and monensin had a significant synergistic effect on earthworms in the acute toxic test. In long-term toxicity tests, co-exposure of atrazine and monensin also led to worse effects on earthworms including oxidative stress, energy metabolism disruption, and cocoon production compared to single exposure. The expression of tight junction proteins was down-regulated significantly by monensin, indicating that the intestinal barrier of earthworms was weakened, possibly causing the increased bioavailability of atrazine. The expressions of heat shock protein 70 (Hsp70) and reproductive and ontogenetic factors (ANN, TCTP) were all downregulated in binary exposure, indicating that the resilience and cocoon production of earthworms were further weakened under combined pollution. Monensin disturbed the energy metabolism and weakened the intestinal barrier of earthworms. These results showed that monensin increased the risks of atrazine in agricultural areas.


Assuntos
Atrazina , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Antibacterianos/farmacologia , Atrazina/toxicidade , Monensin/farmacologia , Monensin/toxicidade , Praguicidas/metabolismo , Solo , Poluentes do Solo/metabolismo
19.
BMC Vet Res ; 18(1): 356, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36151574

RESUMO

BACKGROUND: In recent years, researchers have become increasingly interested in developing natural feed additives that can stabilize ruminal pH and thus prevent or eliminate the risk of severe subacute rumen acidosis. Herein, 3 experiments were conducted using a semi-automated in vitro gas production technique. In the experiment (Exp.) 1, the efficacy of 9 plant extracts (1.5 mg/ml), compared to monensin (MON; 12 µg/ml), to counteract ruminal acidosis stimulated by adding glucose (0.1 g/ml) as a fermentable carbohydrate without buffer was assessed for 6 h. In Exp. 2, cinnamon extract (CIN) and MON were evaluated to combat glucose-induced acidosis with buffer use for 24 h. In Exp. 3, the effect of CIN and MON on preventing acidosis when corn or barley grains were used as substrate was examined. RESULTS: In Exp. 1, cinnamon, grape seeds, orange, pomegranate peels, propolis, and guava extracts significantly increased (P < 0.05) pH compared to control (CON). Both CIN and MON significantly increased the pH (P < 0.001) but reduced cumulated gas production (P < 0.01) compared to the other treatments. In Exp. 2, the addition of CIN extract increased (P < 0.01) pH value compared to CON at the first 6 h of incubation. However, no significant differences in pH values between CIN and CON at 24 h of incubation were observed. The addition of CIN extract and MON decreased (P < 0.001) lactic acid concentration and TVFA compared to CON at 24 h. The CIN significantly (P < 0.01) increased acetate: propionate ratio while MON reduced it. In Exp. 3, both CIN and MON significantly increased (P < 0.05) ruminal pH at 6 and 24 h and reduced lactic acid concentration at 24 h compared to CON with corn as substrate. However, CIN had no effect on pH with barley substrate at all incubation times. CONCLUSIONS: It can be concluded that CIN can be used effectively as an alternative antibiotic to MON to control ruminal acidosis when corn is used as a basal diet.


Assuntos
Acidose , Própole , Acidose/metabolismo , Acidose/prevenção & controle , Acidose/veterinária , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Carboidratos/farmacologia , Cinnamomum zeylanicum , Dieta , Digestão , Fermentação , Glucose/metabolismo , Ácido Láctico/metabolismo , Monensin/farmacologia , Extratos Vegetais/farmacologia , Propionatos/metabolismo , Própole/metabolismo , Própole/farmacologia , Rúmen/metabolismo
20.
J Dairy Sci ; 105(10): 8008-8015, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35965123

RESUMO

Controversy has existed as to whether monensin will provide equal or differential benefits in a higher-energy, lower-roughage close-up diet versus a higher-roughage, lower-energy diet. Our objective was to determine the rumen effects of a controlled-energy, high-fiber diet balanced to meet but not greatly exceed energy requirements during the dry period or a traditional 2-group approach of higher-energy close-up diet. The effects of added monensin in each diet type were determined. Multiparous Holstein cows (n = 17) were fitted surgically with ruminal cannulas. During the first 4 wk of the dry period, all cows were fed a controlled-energy, high-fiber diet (CE) as a total mixed ration for ad libitum intake. During the last 3 wk before calving, half of the cows were switched to a higher-energy, close-up diet until calving (CU), whereas the other half continued to receive the CE diet. Within each dietary group, half of the cows received monensin (MON) supplementation in the diet (24.2 g/t of total dry matter) and half did not (CON). After calving, all cows received the same lactation diet containing monensin (15.4 g/t of dietary dry matter). At 14 d prepartum, dry matter intake was not different across treatments. The weight of rumen contents was greater for cows fed CE. Rumen liquid dilution rate, solids passage rate, pH, total volatile fatty acid (VFA) concentrations, molar proportions of acetate and propionate, and papillae length did not differ among diets. Butyrate percentage tended to be greater for cows fed CE. Postpartum, dry matter intake, mass of rumen contents, solids passage rate, pH, total VFA concentration, molar percentages of propionate and butyrate, and papillae length did not differ among treatments. Liquid dilution rate (16.6, 10.7, 16.0, and 18.2%/h for CE + CON, CE + MON, CU + CON, and CU + MON, respectively) was affected by a diet × monensin interaction. Cows on the CE + CON diet had a greater ruminal proportion of acetate than did cows fed CU + CON, whereas cows fed monensin on either diet were intermediate (diet × monensin interaction). Addition of MON to the CU diet decreased the proportion of propionate (diet × monensin interaction). Cows fed CE had greater mass of rumen contents before parturtition but the high inclusion of wheat straw in the CE diet did not negatively affect rumen papillae length. Monensin inclusion differentially affected liquid passage rate and VFA concentrations.


Assuntos
Monensin , Propionatos , Animais , Bovinos , Feminino , Butiratos , Dieta/veterinária , Fibras na Dieta , Monensin/farmacologia , Rúmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA