Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Toxicol Appl Pharmacol ; 492: 117122, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393465

RESUMO

Exposure to airborne particulate <10 µm (PM10) adversely affects the ocular surface. This study tested PM10 on epithelial barrier integrity in immortalized human corneal epithelial cells (HCE-2) and mouse cornea, and whether antioxidant SKQ1 is restorative. HCE-2 were exposed to 100 µg/ml PM10 ± SKQ1 for 24 h. An Electric Cell-Substrate Impedance Sensing (ECIS) system monitored the impact of PM10. RT-PCR, western blotting and immunofluorescence measured levels of barrier and associated proteins, stanniocalcin 2 (STC2), and a kit measured total calcium. In vivo, female C57BL/6 mice were exposed to either control air or PM10 (±SKQ1) in a whole-body exposure chamber, and barrier associated proteins tested. Tight junction and mucins proteins in the cornea were tested. In HCE-2, PM0 vs control significantly reduced mRNA and protein levels of tight junction and adherence proteins, and mucins. ECIS data demonstrated that PM10 vs control cells exhibited a significant decrease in epithelial barrier strength at 4000 Hz indicated by reduced impedance and resistance. PM10 also upregulated STC2 protein and total calcium levels. In vivo, PM10 vs control reduced zonula occludens 1 and mucins. SKQ1 pre-treatment reversed PM10 effects both in vitro and in vivo. In conclusion, PM10 exposure reduced tight junction and mucin proteins, and compromised the seal between cells in the corneal epithelium leading to decreased epithelial barrier strength. This effect was reversed by SKQ1. Since the corneal epithelium forms the first line of defense against air pollutants, including PM10, preserving its integrity using antioxidants such as SKQ1 is crucial in reducing the occurrence of ocular surface disorders.

2.
Mar Drugs ; 22(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39330304

RESUMO

Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to find new compounds to treat Acanthamoeba infections is clear. In the present study, we evaluated staurosporine as a potential treatment for Acanthamoeba keratitis using mouse cornea as an ex vivo model, and a comparative proteomic analysis was conducted to elucidate a mechanism of action. The obtained results indicate that staurosporine altered the conformation of actin and tubulin in treated trophozoites of A. castellanii. In addition, proteomic analysis of treated trophozoites revealed that this molecule induced overexpression and a downregulation of proteins related to key functions for Acanthamoeba infection pathways. Additionally, the ex vivo assay used validated this model for the study of the pathogenesis and therapies of AK. Finally, staurosporine eliminated the entire amoebic population and prevented the adhesion and infection of amoebae to the epithelium of treated mouse corneas.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Córnea , Modelos Animais de Doenças , Proteômica , Estaurosporina , Animais , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Estaurosporina/farmacologia , Camundongos , Córnea/efeitos dos fármacos , Córnea/parasitologia , Acanthamoeba castellanii/efeitos dos fármacos , Proteômica/métodos , Trofozoítos/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Actinas/metabolismo
3.
Cytokine ; 172: 156375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797357

RESUMO

PURPOSE: This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS: Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS: TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION: TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.


Assuntos
Candida albicans , Ceratite , Animais , Camundongos , Humanos , Candida albicans/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antifúngicos/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Inflamação/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
4.
Bio Protoc ; 13(19): e4829, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817903

RESUMO

Corneal epithelium and stroma are the major cellular structures for ocular protection and vision accuracy; they play important roles in corneal wound healing and inflammation under pathological conditions. Unlike human, murine corneal and stromal fibroblast cells are difficult to isolate for cell culture. In our laboratory, we successfully used an ex vivo culture procedure and an enzymatic procedure to isolate, purify, and culture mouse corneal epithelial and stromal fibroblast cells. Key features • Primary cell culture models of a disease are critical for cellular and molecular mechanism studies. • Corneal tissues with the limbus contain stem cells to generate both epithelial and stromal cells. • An ex vivo corneal culture provides a constant generation of primary corneal cells for multiple passages. • The isolated cells are validated by the corneal epithelial cell markers Krt12 and Cdh1 and the stromal fibroblast marker Vim.

5.
Int Immunopharmacol ; 119: 110195, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087869

RESUMO

Candidalysin is a fungal peptide toxin secreted by Candida albicans hyphae during invasion into epithelial cells. In Candida albicans-infected mucosa, candidalysin causes epithelial cell damage and activates downstream inflammatory responses, especially the release of inflammatory cytokines. However, the role of candidalysin in Candida albicans corneal keratitis remains unexplored. Moreover, it remains unclear whether candidalysin regulates the inflammatory response through the TREM-1/DAP12 pathway in Candida albicans corneal keratitis. In this study, we determined the expression pattern of TREM-1 in a mouse model of Candida albicans corneal keratitis and investigated the molecular mechanism underlying the inflammatory response regulation by candidalysin. The corneal keratitis model was established in C57BL/6 mice. In the GF9 group, mice were pretreated and then treated with the TREM-1 inhibitor GF9; in the candidalysin group, mice were treated with peptide candidalysin; and in the PD98059 group, mice were pretreated with the ERK inhibitor PD98059. Slit-lamp photography, clinical scoring, PCR, western blotting and immunofluorescence assay were performed to observe disease response and GF9 therapeutic efficacy. Pretreatment with candidalysin or PD98059 was performed before Candida albicans infection. GF9 treatment reduced the expression of TREM-1 and cytokines in the infected mouse cornea, whereas candidalysin treatment increased the expression of TREM-1, p-ERK, and cytokines, and this increase was inhibited by GF9. The candidalysin-induced increment of TREM-1, p-ERK, and cytokines was inhibited by PD98059 pretreatment. These data suggest that candidalysin can initiate inflammatory response in Candida albicans corneal keratitis through the TREM-1/DAP12 pathway and can regulate cytokine expression by enhancing ERK phosphorylation.


Assuntos
Candida albicans , Ceratite , Camundongos , Animais , Candida albicans/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Fúngicas , Citocinas/metabolismo
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 256: 119731, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819764

RESUMO

Diabetes has become a major public health problem worldwide, and the incidence of diabetes has been increasing progressively. Diabetes is prone to cause various complications, among which diabetic keratopathy (DK) emphasizes the significant impact on the cornea. The current diagnosis of DK lacks biochemical markers that can be used for early and non-invasive screening and detection. In contrast, in this study, Raman spectroscopy, which demonstrates non-destructive, label-free features, especially the unique advantage of providing molecular fingerprint information for target substances, were utilized to interrogate the intrinsic information of the corneal tissues from normal and diabetic mouse models, respectively. Visually, the Raman spectral response derived from the biochemical components and biochemical differences between the two groups were compared. Moreover, multivariate analysis methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out for advanced statistical analysis. PCA yields a diagnostic results of 57.4% sensitivity, 89.2% specificity, 74.8% accuracy between the diabetic group and control group; Moreover, PLS-DA was employed to enhance the diagnostic ability, showing 76.1% sensitivity, 86.1% specificity, and 87.6% accuracy between the diabetic group and control group. Our proof-of-concept results show the potential of Raman spectroscopy-based techniques to help explore the underlying pathogenesis of DK disease and thus be further expanded for potential applications in the early screening of diabetic diseases.


Assuntos
Diabetes Mellitus , Análise Espectral Raman , Animais , Diabetes Mellitus/diagnóstico , Análise Discriminante , Diagnóstico Precoce , Análise dos Mínimos Quadrados , Camundongos , Análise de Componente Principal
7.
Acta Biomater ; 80: 48-57, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30267886

RESUMO

There are increasing demands for long-term and controlled corneal drug delivery to treat various ocular diseases. Although biodegradable ocular inserts or contact lenses have been developed, the invasiveness and inefficiency of the approaches still need to be improved. Microneedle (MN) technology can deliver therapeutic molecules to the eye in a minimally invasive manner. However, the current ocular MN technology is limited to either short-term corneal drug delivery or retinal drug delivery by suprachoroidal injection. For long-term and minimally invasive corneal drug delivery, we have developed a detachable biodegradable MN that can be delivered to the inside of the cornea for sustained drug release. The detachable and biodegradable MN is a hybrid MN consisting of a drug-loaded biodegradable tip and a supporting base. The hybrid MN can be applied to the cornea by impact insertion, and it leaves only the drug-loaded biodegradable tip within the corneal tissue so that it can release the drug for a certain period. By concentration-controlled molding, the dimension of drug-loaded MN tips was precisely controlled and their detachability was optimized. The detachable tip and a supporting base were assembled to form a hybrid MN by pressure-assisted transfer molding. We carefully optimized the dimension of the drug-tip, injection dwell time, and insertion depth to achieve effective intracorneal injection of the drug-tip. The detachable hybrid MN was applied to an Acanthamoeba keratitis model wherein a biodegradable drug-tip was successfully delivered to the inside of the mouse cornea in vivo. Follow-up of the MN-treated cases for 7 days confirmed the therapeutic efficacy of the detachable biodegradable MN tips. STATEMENT OF SIGNIFICANCE: For the treatment of infectious diseases in the cornea, such as keratitis, eye drops need to be applied topically every hour for a couple of days. This is extremely uncomfortable, and poor compliance to such tightly scheduled drug administration can result in permanent scar formation in the cornea. In this work, we demonstrate a simple and rapid injection of biodegradable microneedle tips in the corneal tissue wherein the tips can deliver antibacterial drugs for 4 days to treat keratitis. Unlike other patch-style microneedle technologies, this approach allows for insertion depth-controlled and highly localized injection of detachable individual microneedle tips to the diseased tissue for sustained drug delivery. This overcomes the limitations of patch-style microneedles such as short-term drug delivery and unnecessary blockage of tissue.


Assuntos
Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Agulhas , Ceratite por Acanthamoeba/tratamento farmacológico , Animais , Biguanidas/administração & dosagem , Biguanidas/farmacologia , Biguanidas/uso terapêutico , Córnea/parasitologia , Córnea/patologia , Dimetilpolisiloxanos/química , Feminino , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pressão
8.
J Control Release ; 209: 272-9, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25937320

RESUMO

It has been challenging for microneedles to deliver drugs effectively to thin tissues with little background support such as the cornea. Herein, we designed a microneedle pen system, a single microneedle with a spring-loaded microneedle applicator to provide impact insertion. To firmly attach solid microneedles with 140 µm in height at the end of macro-scale applicators, a transfer molding process was employed. The fabricated microneedle pens were then applied to mouse corneas. The microneedle pens successfully delivered rhodamine dye deep enough to reach the stromal layer of the cornea with small entry only about 1000 µm(2). When compared with syringes or 30 G needle tips, microneedle pens could achieve more localized and minimally invasive delivery without any chances of perforation. To investigate the efficacy of microneedle pens as a way of drug delivery, sunitinib malate proven to inhibit in vitro angiogenesis, was delivered to suture-induced angiogenesis model. When compared with delivery by a 30 G needle tip dipped with sunitinib malate, only delivery by microneedle pens could effectively inhibit corneal neovascularization in vivo. Microneedle pens could effectively deliver drugs to thin tissues without impairing merits of using microneedles: localized and minimally invasive delivery.


Assuntos
Neovascularização da Córnea/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Indóis/administração & dosagem , Agulhas , Pirróis/administração & dosagem , Administração Oftálmica , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Indóis/uso terapêutico , Camundongos Endogâmicos C57BL , Microinjeções , Neovascularização Fisiológica/efeitos dos fármacos , Pirróis/uso terapêutico , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA