Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Syst Evol Microbiol ; 70(8): 4725-4729, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32687462

RESUMO

An anaerobic bacterial strain, named TLL-A4T, was isolated from fecal pellets of conventionally raised C57BL/6J mice. Analysis of the 16S rRNA gene indicated that the strain belongs to the phylum Bacteroidetes and, more specifically, to the recently proposed Muribaculaceae (also known as S24-7 clade or Candidatus Homeothermaceae). Strain TLL-A4T's 16S rRNA gene shared 92.8 % sequence identity with the type strain of the only published species of the genus Muribaculum, Muribaculum intestinale DSM 28989T. Genome-sequencing of TLL-A4T was performed to compare average amino acid identity (AAI) value and percentage of conserved proteins (POCP) between both strains. The AAI analysis revealed that strain TLL-A4T had high identity (69.8 %) with M. intestinale DSM 28989T, while the POCP was 56 %. These values indicate that strain TLL-A4T could be considered a member of the genus Muribaculum but not belonging to the species M. intestinale. Quinone analysis indicated MK10 (63 %) and MK11 (32 %) as major quinones in the membrane, while MK9 was only present as a minor component (5 %). The main cellular fatty acid was anteiso-C15 : 0 (42.8 %); summed feature 11 (17.5 %), C15 : 0 iso (13.4 %), C18 : 1 ω9c (5.6 %), C16.0 3-OH (4.5 %) and C15 : 0 (4.2 %) were detected in minor amounts. Analysis of enzyme activities using the API 32A and API 20A kits indicated major differences between strain TLL-A4T and Muribaculum intestinale DSM 28989T. Based on genotypic, phylogenetic and phenotypic differences, strain TLL-A4T is considered to represent a novel species of the genus Muribaculum, for which the name Muribaculum gordoncarteri sp. nov. is proposed. The type strain is TLL-A4T (=DSM 108194T=KCTC 15770T).


Assuntos
Bacteroidetes/classificação , Fezes/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
2.
Gut Microbes ; 15(1): 2231590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431867

RESUMO

The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Animais , Camundongos Endogâmicos C57BL , Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/genética
3.
Cell Host Microbe ; 30(11): 1630-1645.e25, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208631

RESUMO

Microbiome research needs comprehensive repositories of cultured bacteria from the intestine of mammalian hosts. We expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes strain-level diversity, small-sized bacteria, and previously undescribed taxa (one family, 10 genera, and 39 species). This collection enabled metagenome-educated prediction of synthetic communities (SYNs) that capture key functional differences between microbiomes, notably identifying communities associated with either resistance or susceptibility to DSS-induced colitis. Additionally, nine species were used to amend the Oligo-Mouse Microbiota (OMM)12 model, yielding the OMM19.1 model. The added strains compensated for phenotype differences between OMM12 and specific pathogen-free mice, including body composition and immune cells in the intestine and associated lymphoid tissues. Ready-to-use OMM stocks are available for future studies. In conclusion, this work improves our knowledge of gut microbiota diversity in mice and enables functional studies via the modular use of isolates.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Microbioma Gastrointestinal/genética , Bactérias , Metagenoma , Intestinos , Modelos Animais de Doenças , Mamíferos/genética
4.
Microbiome ; 9(1): 147, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183063

RESUMO

BACKGROUND: Leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice are commonly used mice models mimicking the conditions of obesity and type 2 diabetes development. However, although ob/ob and db/db mice are similarly gaining weight and developing massive obesity, db/db mice are more diabetic than ob/ob mice. It remains still unclear why targeting the same pathway-leptin signaling-leads to the development of two different phenotypes. Given that gut microbes dialogue with the host via different metabolites (e.g., short-chain fatty acids) but also contribute to the regulation of bile acids metabolism, we investigated whether inflammatory markers, bacterial components, bile acids, short-chain fatty acids, and gut microbes could contribute to explain the specific phenotype discriminating the onset of an obese and/or a diabetic state in ob/ob and db/db mice. RESULTS: Six-week-old ob/ob and db/db mice were followed for 7 weeks; they had comparable body weight, fat mass, and lean mass gain, confirming their severely obese status. However, as expected, the glucose metabolism and the glucose-induced insulin secretion were significantly different between ob/ob and db/db mice. Strikingly, the fat distribution was different, with db/db mice having more subcutaneous and ob/ob mice having more epididymal fat. In addition, liver steatosis was more pronounced in the ob/ob mice than in db/db mice. We also found very distinct inflammatory profiles between ob/ob and db/db mice, with a more pronounced inflammatory tone in the liver for ob/ob mice as compared to a higher inflammatory tone in the (subcutaneous) adipose tissue for db/db mice. When analyzing the gut microbiota composition, we found that the quantity of 19 microbial taxa was in some way affected by the genotype. Furthermore, we also show that serum LPS concentration, hepatic bile acid content, and cecal short-chain fatty acid profiles were differently affected by the two genotypes. CONCLUSION: Taken together, our results elucidate potential mechanisms implicated in the development of an obese or a diabetic state in two genetic models characterized by an altered leptin signaling. We propose that these differences could be linked to specific inflammatory tones, serum LPS concentration, bile acid metabolism, short-chain fatty acid profile, and gut microbiota composition. Video abstract.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade
5.
Cell Rep ; 30(9): 2909-2922.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130896

RESUMO

The complexity of host-associated microbial ecosystems requires host-specific reference catalogs to survey the functions and diversity of these communities. We generate a comprehensive resource, the integrated mouse gut metagenome catalog (iMGMC), comprising 4.6 million unique genes and 660 metagenome-assembled genomes (MAGs), many (485 MAGs, 73%) of which are linked to reconstructed full-length 16S rRNA gene sequences. iMGMC enables unprecedented coverage and taxonomic resolution of the mouse gut microbiota; i.e., more than 92% of MAGs lack species-level representatives in public repositories (<95% ANI match). The integration of MAGs and 16S rRNA gene data allows more accurate prediction of functional profiles of communities than predictions based on 16S rRNA amplicons alone. Accompanying iMGMC, we provide a set of MAGs representing 1,296 gut bacteria obtained through complementary assembly strategies. We envision that integrated resources such as iMGMC, together with MAG collections, will enhance the resolution of numerous existing and future sequencing-based studies.


Assuntos
Microbioma Gastrointestinal/genética , Metagenoma/genética , Animais , Sequência de Bases , Biodiversidade , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Genéticos , Filogenia , RNA Ribossômico 16S/genética
6.
Pathogens ; 9(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961786

RESUMO

There is strong correlation between changes in abundance of specific bacterial species and several diseases including schistosomiasis. Several studies have described therapeutic effects of curcumin (CUR) which may arise from its regulative effects on intestinal microbiota. Thus, we examined the impact of CUR on the diversity of intestinal microbiota with/without infection by Schistosoma mansoni cercariae for 56 days. Enterobacteriaceae was dominating in a naive and S. mansoni infected mice group without CUR treatment, the most predominant species was Escherichia coli with relative density (R.D%) = 80.66% and the least one was Pseudomonas sp. (0.52%). The influence of CUR on murine microbiota composition was examined one week after oral administration of high (40) and low (20 mg/kg b.w.) CUR doses were administered three times, with two day intervals. CUR induced high variation in the Enterobacteriaceae family, characterized by a significant (p < 0.001) reduction in E. coli and asignificant (p < 0.001) increase in Pseudomonas sp. in both naïve and S. mansoni-infected mice, compared to untreated mice, in a dose-dependent manner. Additionally, our study showed the effects of high CUR doses on S. mansoni infection immunological and parasitological parameters. These data support CUR's ability to promote Pseudomonas sp. known to produce schistosomicidal toxins and offset the sequelae of murine schistosomiasis.

7.
J Proteomics ; 203: 103378, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102759

RESUMO

Breastfeeding is nowadays known to be one of the most critical factors contributing to the development of an efficient immune system. In the last decade, a consistent number of pieces of evidence demonstrated the relationship between a healthy organism and its gut microbiota. However, this link is still not fully understood and requires further investigation. We recently adopted a murine model to describe the impact of either maternal milk or parental genetic background, on the composition of the gut microbial population in the first weeks of life. A metaproteomic approach to such complex environments is a big challenge that requires a strong effort in both data production and analysis, including the set-up of dedicated multitasking bioinformatics pipelines. Herein we present an LC-MS/MS based investigation to monitor mouse gut microbiota in the early life, aiming at characterizing its functions and metabolic activities together with a taxonomic description in terms of operational taxonomic units. We provided a quantitative evaluation of bacterial metaproteins, taking into account differential expression results in relation to the functional and taxonomic classification, particularly with proteins from orthologues groups. This allowed the reduction of the bias arising from the presence of a high number of shared peptides, and proteins, among different bacterial species. We also focused on host mucosal proteome and its modulation, according to different microbiota composition. SIGNIFICANCE: This paper would represent a reference work for investigations on gut microbiota in early life, from both a microbiological and a functional proteomic point of view. We focused on the shaping of the mouse gut microbiota in dependence on the feeding modality, defining a reliable taxonomic description, highlighting some functional characteristics of the microbial community, and performing a first quantitative evaluation by data independent analysis in metaproteomics.


Assuntos
Animais Recém-Nascidos/microbiologia , Microbioma Gastrointestinal , Proteômica/métodos , Animais , Proteínas de Bactérias/análise , Cromatografia Líquida , Classificação , Camundongos , Mucosa/química , Proteínas/análise , Espectrometria de Massas em Tandem
8.
Microbiome ; 7(1): 28, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782206

RESUMO

BACKGROUND: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS: We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS: A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS: We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.


Assuntos
Técnicas Bacteriológicas/métodos , Bacteroides/classificação , Metagenômica/métodos , RNA Ribossômico 16S/genética , Animais , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Camundongos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
9.
Anim Microbiome ; 1(1): 11, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33499919

RESUMO

BACKGROUND: Growing evidence supports the role of gut microbiota in obesity and its related disorders including type 2 diabetes. Ob/ob mice, which are hyperphagic due to leptin deficiency, are commonly used models of obesity and were instrumental in suggesting links between gut microbiota and obesity. Specific changes in their gut microbiota such as decreased microbial diversity and increased Firmicutes to Bacteroidetes ratio have been suggested to contribute to obesity via increased microbiota capacity to harvest energy. However, the differential development of ob/ob mouse gut microbiota compared to wild type microbiota and the role of hyperphagia in their metabolic impairment have not been investigated thoroughly. RESULTS: We performed a 10-week long study in ob/ob (n = 12) and wild type control (n = 12) mice fed ad libitum. To differentiate effects of leptin deficiency from hyperphagia, we pair-fed an additional group of ob/ob mice (n = 11) based on the food consumption of control mice. Compared to control mice, ob/ob mice fed ad libitum exhibited compromised glucose metabolism and increased body fat percentage. Pair-fed ob/ob mice exhibited even more compromised glucose metabolism and maintained strikingly similar high body fat percentage at the cost of lean body mass. Acclimatization of the microbiota to our facility took up to 5 weeks. Leptin deficiency impacted gut microbial composition, explaining 18.3% of the variance. Pair-feeding also altered several taxa, although the overall community composition at the end of the study was not significantly different. We found 24 microbial taxa associations with leptin deficiency, notably enrichment of members of Lactobacillus and depletion of Akkermansia muciniphila. Microbial metabolic functions related to energy harvest, including glycan degradation, phosphotransferase systems and ABC transporters, were enriched in the ob/ob mice. Taxa previously reported as relevant for obesity were associated with body weight, including Oscillibacter and Alistipes (both negatively correlated) and Prevotella (positively correlated). CONCLUSIONS: Leptin deficiency caused major changes in the mouse gut microbiota composition. Several microbial taxa were associated with body composition. Pair-fed mice maintained a pre-set high proportion of body fat despite reduced calorie intake, and exhibited more compromised glucose metabolism, with major implications for treatment options for genetically obese individuals.

10.
Water Res ; 132: 79-89, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306702

RESUMO

Gut microbiota exerts a fundamental role on host physiology, and how extrinsic perturbations influence its composition has been increasingly examined. However, the effect of drinking water on gut microbiota is still poorly understood. In this study, we explored the response of mouse gut bacterial community (fecal and mucosa-adhered) to the ingestion of different types of drinking water. The experimental cohort was divided according to different water sources into four groups of mice that consumed autoclaved tap water (control group), water collected directly from a drinking water treatment plant, tap water, and commercial bottled mineral water. Differences among groups were observed, especially related to control group, which exhibited the smallest intra-group variation, and the largest distance from test groups on the last experimental day. Clinically important taxa, such as Acinetobacter and Staphylococcus, increased in feces of mice that drank tap water and in mucosa-adhered samples of animals from disinfected and tap water groups. Furthermore, statistical analyses showed that both time elapsed between samplings and water type significantly influenced the variation observed in the samples. Our results reveal that drinking water potentially affects gut microbiota composition. Additionally, the increase of typical drinking water clinically relevant and antibiotic resistance-associated bacteria in gut microbiota is a cause of concern.


Assuntos
Bactérias/classificação , Água Potável , Microbioma Gastrointestinal , Águas Minerais , Animais , Desinfecção , Fezes/microbiologia , Feminino , Camundongos Endogâmicos BALB C , Purificação da Água , Abastecimento de Água
11.
Front Microbiol ; 7: 1523, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725814

RESUMO

At birth, contact with external stimuli, such as nutrients derived from food, is necessary to modulate the symbiotic balance between commensal and pathogenic bacteria, protect against bacterial dysbiosis, and initiate the development of the mucosal immune response. Among a variety of different feeding patterns, breastfeeding represents the best modality. In fact, the capacity of breast milk to modulate the composition of infants' gut microbiota leads to beneficial effects on their health. In this study, we used newborn mice as a model to evaluate the effect of parental genetic background (i.e., IgA-producing mice and IgA-deficient mice) and feeding modulation (i.e., maternal feeding and cross-feeding) on the onset and shaping of gut microbiota after birth. To investigate these topics, we used either a culturomic approach that employed Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MS), or bottom-up Liquid Chromatography, with subsequent MSMS shotgun metaproteomic analysis that compared and assembled results of the two techniques. We found that the microbial community was enriched by lactic acid bacteria when pups were breastfed by wild-type (WT) mothers, while IgA-deficient milk led to an increase in the opportunistic bacterial pathogen (OBP) population. Cross-feeding results suggested that IgA supplementation promoted the exclusion of some OBPs and the temporary appearance of beneficial species in pups fed by WT foster mothers. Our results show that both techniques yield a picture of microbiota from different angles and with varying depths. In particular, our metaproteomic pipeline was found to be a reliable tool in the description of microbiota. Data from these studies are available via ProteomeXchange, with identifier PXD004033.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA