Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 157: 104714, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39187170

RESUMO

Autism spectrum disorder (ASD) is a common neurological condition. Early diagnosis and treatment are essential for enhancing the life quality of individuals with ASD. However, most existing studies either focus solely on the brain networks of subjects within a single atlas or merely employ simple matrix concatenation to represent the fusion of multi-atlas. These approaches neglected the natural spatial overlap that exists between brain regions across multi-atlas and did not fully capture the comprehensive information of brain regions under different atlases. To tackle this weakness, in this paper, we propose a novel multi-atlas fusion template based on spatial overlap degree of brain regions, which aims to obtain a comprehensive representation of brain networks. Specifically, we formally define a measurement of the spatial overlap among brain regions across different atlases, named spatial overlap degree. Then, we fuse the multi-atlas to obtain brain networks of each subject based on spatial overlap. Finally, the GCN is used to perform the final classification. The experimental results on Autism Brain Imaging Data Exchange (ABIDE) demonstrate that our proposed method achieved an accuracy of 0.757. Overall, our method outperforms SOTA methods in ASD/TC classification.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Imageamento por Ressonância Magnética , Transtorno do Espectro Autista/diagnóstico , Humanos , Encéfalo/diagnóstico por imagem , Algoritmos , Neuroimagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Criança
2.
MAGMA ; 36(5): 687-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36800143

RESUMO

OBJECTIVE: In the management of the aortic aneurysm, 4D flow magnetic resonance Imaging provides valuable information for the computation of new biomarkers using computational fluid dynamics (CFD). However, accurate segmentation of the aorta is required. Thus, our objective is to evaluate the performance of two automatic segmentation methods on the calculation of aortic wall pressure. METHODS: Automatic segmentation of the aorta was performed with methods based on deep learning and multi-atlas using the systolic phase in the 4D flow MRI magnitude image of 36 patients. Using mesh morphing, isotopological meshes were generated, and CFD was performed to calculate the aortic wall pressure. Node-to-node comparisons of the pressure results were made to identify the most robust automatic method respect to the pressures obtained with a manually segmented model. RESULTS: Deep learning approach presented the best segmentation performance with a mean Dice similarity coefficient and a mean Hausdorff distance (HD) equal to 0.92+/- 0.02 and 21.02+/- 24.20 mm, respectively. At the global level HD is affected by the performance in the abdominal aorta. Locally, this distance decreases to 9.41+/- 3.45 and 5.82+/- 6.23 for the ascending and descending thoracic aorta, respectively. Moreover, with respect to the pressures from the manual segmentations, the differences in the pressures computed from deep learning were lower than those computed from multi-atlas method. CONCLUSION: To reduce biases in the calculation of aortic wall pressure, accurate segmentation is needed, particularly in regions with high blood flow velocities. Thus, the deep learning segmen-tation method should be preferred.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Aorta Abdominal/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo
3.
Neuroimage ; 253: 119091, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288282

RESUMO

T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlinear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neonatal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI analyses produces virtually identical functional connectivity results when compared to those resulting from T2w images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Adulto , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos
4.
J Digit Imaging ; 35(6): 1634-1647, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995900

RESUMO

Glioma is an aggressive type of cancer that develops in the brain or spinal cord. Due to many differences in its shape and appearance, accurate segmentation of glioma for identifying all parts of the tumor and its surrounding cancerous tissues is a challenging task. In recent researches, the combination of multi-atlas segmentation and machine learning methods provides robust and accurate results by learning from annotated atlas datasets. To overcome the side effects of limited existing information on atlas-based segmentation, and the long training phase of learning methods, we proposed a semi-supervised unified framework for multi-label segmentation that formulates this problem in terms of a Markov Random Field energy optimization on a parametric graph. To evaluate the proposed framework, we apply it to publicly available BRATS datasets, including low- and high-grade glioma tumors. Experimental results indicate competitive performance compared to the state-of-the-art methods. Compared with the top ranked methods, the proposed framework obtains the best dice score for segmenting of "whole tumor" (WT), "tumor core" (TC ) and "enhancing active tumor" (ET) regions. The achieved accuracy is 94[Formula: see text] characterized by the mean dice score. The motivation of using MRF graph is to map the segmentation problem to an optimization model in a graphical environment. Therefore, by defining perfect graph structure and optimum constraints and flows in the continuous max-flow model, the segmentation is performed precisely.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Algoritmos , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
5.
Mult Scler ; 26(8): 987-992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730233

RESUMO

BACKGROUND: Investigating the degeneration of specific thalamic nuclei in multiple sclerosis (MS) remains challenging. METHODS: White-matter-nulled (WMn) MPRAGE, MP-FLAIR, and standard T1-weighted magnetic resonance imaging (MRI) were performed on MS patients (n = 15) and matched controls (n = 12). Thalamic lesions were counted in individual sequences and lesion contrast-to-noise ratio (CNR) was measured. Volumes of 12 thalamic nuclei were measured using an automatic segmentation pipeline specifically developed for WMn-MPRAGE. RESULTS: WMn-MPRAGE showed more thalamic MS lesions (n = 35 in 9 out of 15 patients) than MP-FLAIR (n = 25) and standard T1 (n = 23), which was associated with significant improvement of CNR (p < 0.0001). MS patients had whole thalamus atrophy (p = 0.003) with lower volumes found for the anteroventral (p < 0.001), the pulvinar (p < 0.0001), and the habenular (p = 0.004) nuclei. CONCLUSION: WMn-MPRAGE and automatic thalamic segmentation can highlight thalamic MS lesions and measure patterns of focal thalamic atrophy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Núcleos Talâmicos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Atlas como Assunto , Atrofia/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Núcleos Talâmicos/patologia , Substância Branca/patologia
6.
MAGMA ; 33(5): 677-688, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32152794

RESUMO

OBJECTIVE: To design, develop and evaluate an automated multi-atlas method for segmentation and volume quantification of gluteus maximus from Dixon and T1-weighted images. MATERIALS AND METHODS: The multi-atlas segmentation method uses an atlas library constructed from 15 Dixon MRI scans of healthy subjects. A non-rigid registration between each atlas and the target, followed by majority voting label fusion, is used in the segmentation. We propose a region of interest (ROI) to standardize the measurement of muscle bulk. The method was evaluated using the dice similarity coefficient (DSC) and the relative volume difference (RVD) as metrics, for Dixon and T1-weighted target images. RESULTS: The mean(± SD) DSC was 0.94 ± 0.01 for Dixon images, while 0.93 ± 0.02 for T1-weighted. The RVD between the automated and manual segmentation had a mean(± SD) value of 1.5 ± 4.3% for Dixon and 1.5 ± 4.8% for T1-weighted images. In the muscle bulk ROI, the DSC was 0.95 ± 0.01 and the RVD was 0.6 ± 3.8%. CONCLUSION: The method allows an accurate fully automated segmentation of gluteus maximus for Dixon and T1-weighted images and provides a relatively accurate volume measurement in shorter times (~ 20 min) than the current gold-standard manual segmentations (2 h). Visual inspection of the segmentation would be required when higher accuracy is needed.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Músculo Esquelético , Coxa da Perna
7.
Neuroimage ; 194: 272-282, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894331

RESUMO

The thalamus and its nuclei are largely indistinguishable on standard T1 or T2 weighted MRI. While diffusion tensor imaging based methods have been proposed to segment the thalamic nuclei based on the angular orientation of the principal diffusion tensor, these are based on echo planar imaging which is inherently limited in spatial resolution and suffers from distortion. We present a multi-atlas segmentation technique based on white-matter-nulled MP-RAGE imaging that segments the thalamus into 12 nuclei with computation times on the order of 10 min on a desktop PC; we call this method THOMAS (THalamus Optimized Multi Atlas Segmentation). THOMAS was rigorously evaluated on 7T MRI data acquired from healthy volunteers and patients with multiple sclerosis by comparing against manual segmentations delineated by a neuroradiologist, guided by the Morel atlas. Segmentation accuracy was very high, with uniformly high Dice indices: at least 0.85 for large nuclei like the pulvinar and mediodorsal nuclei and at least 0.7 even for small structures such as the habenular, centromedian, and lateral and medial geniculate nuclei. Volume similarity indices ranged from 0.82 for the smaller nuclei to 0.97 for the larger nuclei. Volumetry revealed that the volumes of the right anteroventral, right ventral posterior lateral, and both right and left pulvinar nuclei were significantly lower in MS patients compared to controls, after adjusting for age, sex and intracranial volume. Lastly, we evaluated the potential of this method for targeting the Vim nucleus for deep brain surgery and focused ultrasound thalamotomy by overlaying the Vim nucleus segmented from pre-operative data on post-operative data. The locations of the ablated region and active DBS contact corresponded well with the segmented Vim nucleus. Our fast, direct structural MRI based segmentation method opens the door for MRI guided intra-operative procedures like thalamotomy and asleep DBS electrode placement as well as for accurate quantification of thalamic nuclear volumes to follow progression of neurological disorders.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Núcleos Talâmicos/anatomia & histologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Neuroimage ; 194: 105-119, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910724

RESUMO

Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI). Recently, deep convolution neural network (CNN) has been applied to whole brain segmentation. However, restricted by current GPU memory, 2D based methods, downsampling based 3D CNN methods, and patch-based high-resolution 3D CNN methods have been the de facto standard solutions. 3D patch-based high resolution methods typically yield superior performance among CNN approaches on detailed whole brain segmentation (>100 labels), however, whose performance are still commonly inferior compared with state-of-the-art multi-atlas segmentation methods (MAS) due to the following challenges: (1) a single network is typically used to learn both spatial and contextual information for the patches, (2) limited manually traced whole brain volumes are available (typically less than 50) for training a network. In this work, we propose the spatially localized atlas network tiles (SLANT) method to distribute multiple independent 3D fully convolutional networks (FCN) for high-resolution whole brain segmentation. To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location. To address the second challenge, auxiliary labels on 5111 initially unlabeled scans were created by multi-atlas segmentation for training. Since the method integrated multiple traditional medical image processing methods with deep learning, we developed a containerized pipeline to deploy the end-to-end solution. From the results, the proposed method achieved superior performance compared with multi-atlas segmentation methods, while reducing the computational time from >30 h to 15 min. The method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg).


Assuntos
Encéfalo/anatomia & histologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Atlas como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
9.
Hum Brain Mapp ; 40(5): 1507-1527, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431208

RESUMO

When analyzing large multicenter databases, the effects of multiple confounding covariates increase the variability in the data and may reduce the ability to detect changes due to the actual effect of interest, for example, changes due to disease. Efficient ways to evaluate the effect of covariates toward the data harmonization are therefore important. In this article, we showcase techniques to assess the "goodness of harmonization" of covariates. We analyze 7,656 MR images in the multisite, multiscanner Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We present a comparison of three methods for estimating total intracranial volume to assess their robustness and correct the brain structure volumes using the residual method and the proportional (normalization by division) method. We then evaluated the distribution of brain structure volumes over the entire ADNI database before and after accounting for multiple covariates such as total intracranial volume, scanner field strength, sex, and age using two techniques: (a) Zscapes, a panoramic visualization technique to analyze the entire database and (b) empirical cumulative distributions functions. The results from this study highlight the importance of assessing the goodness of data harmonization as a necessary preprocessing step when pooling large data set with multiple covariates, prior to further statistical data analysis.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Interpretação Estatística de Dados , Bases de Dados Factuais , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Caracteres Sexuais
10.
J Cardiovasc Magn Reson ; 21(1): 27, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31088480

RESUMO

BACKGROUND: Aortic pulse wave velocity (PWV) is an indicator of aortic stiffness and is used as a predictor of adverse cardiovascular events. PWV can be non-invasively assessed using magnetic resonance imaging (MRI). PWV computation requires two components, the length of the aortic arch and the time taken for the systolic pressure wave to travel through the aortic arch. The aortic length is calculated using a multi-slice 3D scan and the transit time is computed using a 2D velocity encoded MRI (VE) scan. In this study we present and evaluate an automatic method to quantify the aortic pulse wave velocity using a large population-based cohort. METHODS: For this study 212 subjects were retrospectively selected from a large multi-center heart-brain connection cohort. For each subject a multi-slice 3D scan of the aorta was acquired in an oblique-sagittal plane and a 2D VE scan acquired in a transverse plane cutting through the proximal ascending and descending aorta. PWV was calculated in three stages: (i) a multi-atlas-based segmentation method was developed to segment the aortic arch from the multi-slice 3D scan and subsequently estimate the length of the proximal aorta, (ii) an algorithm that delineates the proximal ascending and descending aorta from the time-resolved 2D VE scan and subsequently obtains the velocity-time flow curves was also developed, and (iii) automatic methods that can compute the transit time from the velocity-time flow curves were implemented and investigated. Finally the PWV was obtained by combining the aortic length and the transit time. RESULTS: Quantitative evaluation with respect to the length of the aortic arch as well as the computed PWV were performend by comparing the results of the novel automatic method to those obtained manually. The mean absolute difference in aortic length obtained automatically as compared to those obtained manually was 3.3 ± 2.8 mm (p < 0.05), the manual inter-observer variability on a subset of 45 scans was 3.4 ± 3.4 mm (p = 0.49). Bland-Altman analysis between the automataic method and the manual methods showed a bias of 0.0 (-5.0,5.0) m/s for the foot-to-foot approach, -0.1 (-1.2, 1.1) and -0.2 (-2.6, 2.1) m/s for the half-max and the cross-correlation methods, respectively. CONCLUSION: We proposed and evaluated a fully automatic method to calculate the PWV on a large set of multi-center MRI scans. It was observed that the overall results obtained had very good agreement with manual analysis. Our proposed automatic method would be very beneficial for large population based studies, where manual analysis requires a lot of manpower.


Assuntos
Aorta Torácica/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Análise de Onda de Pulso , Rigidez Vascular , Idoso , Aorta Torácica/fisiopatologia , Automação , Doenças Cardiovasculares/fisiopatologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Países Baixos , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Tempo
11.
BMC Med Imaging ; 19(1): 42, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126254

RESUMO

BACKGROUND: Brain image segmentation is the basis and key to brain disease diagnosis, treatment planning and tissue 3D reconstruction. The accuracy of segmentation directly affects the therapeutic effect. Manual segmentation of these images is time-consuming and subjective. Therefore, it is important to research semi-automatic and automatic image segmentation methods. In this paper, we propose a semi-automatic image segmentation method combined with a multi-atlas registration method and an active contour model (ACM). METHOD: We propose a multi-atlas active contour segmentation method using a template optimization algorithm. First, a multi-atlas registration method is used to obtain the prior shape information of the target tissue, and then a label fusion algorithm is used to generate the initial template. Second, a template optimization algorithm is used to reduce the multi-atlas registration errors and generate the initial active contour (IAC). Finally, a ACM is used to segment the target tissue. RESULTS: The proposed method was applied to the challenging publicly available MR datasets IBSR and MRBrainS13. In the MRBrainS13 datasets, we obtained an average thalamus Dice similarity coefficient of 0.927 ± 0.014 and an average Hausdorff distance (HD) of 2.92 ± 0.53. In the IBSR datasets, we obtained a white matter (WM) average Dice similarity coefficient of 0.827 ± 0.04 and a gray gray matter (GM) average Dice similarity coefficient of 0.853 ± 0.03. CONCLUSION: In this paper, we propose a semi-automatic brain image segmentation method. The main contributions of this paper are as follows: 1) Our method uses a multi-atlas registration method based on affine transformation, which effectively reduces the multi-atlas registration time compared to the complex nonlinear registration method. The average registration time of each target image in the IBSR datasets is 255 s, and the average registration time of each target image in the MRBrainS13 datasets is 409 s. 2) We used a template optimization algorithm to improve registration error and generate a continuous IAC. 3) Finally, we used a ACM to segment the target tissue and obtain a smooth continuous target contour.


Assuntos
Encefalopatias/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Algoritmos , Atlas como Assunto , Encefalopatias/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
12.
J Digit Imaging ; 32(2): 241-250, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30756268

RESUMO

Anthropometric parameters like muscle body mass (MBM), fat body mass (FBM), lean body mass (LBM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) are used in oncology. Our aim was to develop and evaluate the software Anthropometer3D measuring these anthropometric parameters on the CT of PET/CT. This software performs a multi-atlas segmentation of CT of PET/CT with extrapolation coefficients for the body parts beyond the usual acquisition range (from the ischia to the eyes). The multi-atlas database is composed of 30 truncated CTs manually segmented to isolate three types of voxels (muscle, fat, and visceral fat). To evaluate Anthropomer3D, a leave-one-out cross-validation was performed to measure MBM, FBM, LBM, VAT, and SAT. The reference standard was based on the manual segmentation of the corresponding whole-body CT. A manual segmentation of one CT slice at level L3 was also used. Correlations were analyzed using Dice coefficient, intra-class coefficient correlation (ICC), and Bland-Altman plot. The population was heterogeneous (sex ratio 1:1; mean age 57 years old [min 23; max 74]; mean BMI 27 kg/m2 [min 18; max 40]). Dice coefficients between reference standard and Anthropometer3D were excellent (mean+/-SD): muscle 0.95 ± 0.02, fat 1.00 ± 0.01, and visceral fat 0.97 ± 0.02. The ICC was almost perfect (minimal value of 95% CI of 0.97). All Bland-Altman plot values (mean difference, 95% CI and slopes) were better for Anthropometer3D compared to L3 level segmentation. Anthropometer3D allows multiple anthropometric measurements based on an automatic multi-slice segmentation. It is more precise than estimates using L3 level segmentation.


Assuntos
Antropometria/métodos , Atlas como Assunto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento Tridimensional , Gordura Intra-Abdominal/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Compostos Radiofarmacêuticos , Software , Imagem Corporal Total
13.
J Digit Imaging ; 32(6): 987-994, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31197558

RESUMO

To understand potential orbital biomarkers generated from computed tomography (CT) imaging in patients with thyroid eye disease. This is a retrospective cohort study. From a database of an ongoing thyroid eye disease research study at our institution, we identified 85 subjects who had both clinical examination and laboratory records supporting the diagnosis of thyroid eye disease and concurrent imaging prior to any medical or surgical intervention. Patients were excluded if imaging quality or type was not amenable to segmentation. The images of 170 orbits were analyzed with the developed automated segmentation tool. The main outcome measure was to cross 25 CT structural metrics for each eye with nine clinical markers using a Kendall rank correlation test to identify significant relationships. The Kendall rank correlation test between automatically calculated CT metrics and clinical data demonstrated numerous correlations. Extraocular rectus muscle metrics, such as the average diameter of the superior, medial, and lateral rectus muscles, showed a strong correlation (p < 0.05) with loss of visual acuity and presence of ocular motility defects. Hertel measurements demonstrated a strong correlation (p < 0.05) with volumetric measurements of the optic nerve and other orbital metrics such as the crowding index and proptosis. Optic neuropathy was strongly correlated (p < 0.05) with an increase in the maximum diameter of the superior muscle. This novel method of automated imaging metrics may provide objective, rapid clinical information. This data may be useful for appreciation of severity of thyroid eye disease and recognition of risk factors of visual impairment from dysthyroid optic neuropathy from CT imaging.


Assuntos
Oftalmopatias/diagnóstico por imagem , Oftalmopatias/etiologia , Órbita/diagnóstico por imagem , Doenças da Glândula Tireoide/complicações , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Coortes , Oftalmopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Órbita/patologia , Estudos Retrospectivos , Doenças da Glândula Tireoide/patologia , Adulto Jovem
14.
J Med Syst ; 43(7): 225, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31190229

RESUMO

Melanoma is a life threading disease when it grows outside the corium layer of the skin. Mortality rates of the Melanoma cases are maximum among the skin cancer patients. The cost required for the treatment of advanced melanoma cases is very high and the survival rate is low. Numerous computerized dermoscopy systems are developed based on the combination of shape, texture and color features to facilitate early diagnosis of melanoma. The availability and cost of the dermoscopic imaging system is still an issue. To mitigate this issue, this paper presented an integrated segmentation and Third Dimensional (3D) feature extraction approach for the accurate diagnosis of melanoma. A multi-atlas method is applied for the image segmentation. The patch-based label fusion model is expressed in a Bayesian framework to improve the segmentation accuracy. A depth map is obtained from the Two-dimensional (2D) dermoscopic image for reconstructing the 3D skin lesion represented as structure tensors. The 3D shape features including the relative depth features are obtained. Streaks are the significant morphological terms of the melanoma in the radial growth phase. The proposed method yields maximum segmentation accuracy, sensibility, specificity and minimum cost function than the existing segmentation technique and classifier.


Assuntos
Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Teorema de Bayes , Cor , Humanos , Melanoma/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Sensibilidade e Especificidade
15.
J Med Syst ; 43(8): 241, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227923

RESUMO

The multi-atlas method is one of the efficient and common automatic labeling method, which uses the prior information provided by expert-labeled images to guide the labeling of the target. However, most multi-atlas-based methods depend on the registration that may not give the correct information during the label propagation. To address the issue, we designed a new automatic labeling method through the hashing retrieval based atlas forest. The proposed method propagates labels without registration to reduce the errors, and constructs a target-oriented learning model to integrate information among the atlases. This method innovates a coarse classification strategy to preprocess the dataset, which retains the integrity of dataset and reduces computing time. Furthermore, the method considers each voxel in the atlas as a sample and encodes these samples with hashing for the fast sample retrieval. In the stage of labeling, the method selects suitable samples through hashing learning and trains atlas forests by integrating the information from the dataset. Then, the trained model is used to predict the labels of the target. Experimental results on two datasets illustrated that the proposed method is promising in the automatic labeling of MR brain images.


Assuntos
Processamento de Imagem Assistida por Computador , Neuroimagem , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Humanos , Aprendizado de Máquina
16.
Neuroimage ; 179: 187-198, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908313

RESUMO

The rabbit model has become increasingly popular in neurodevelopmental studies as it is best suited to bridge the gap in translational research between small and large animals. In the context of preclinical studies, high-resolution magnetic resonance imaging (MRI) is often the best modality to investigate structural and functional variability of the brain, both in vivo and ex vivo. In most of the MRI-based studies, an important requirement to analyze the acquisitions is an accurate parcellation of the considered anatomical structures. Manual segmentation is time-consuming and typically poorly reproducible, while state-of-the-art automated segmentation algorithms rely on available atlases. In this work we introduce the first digital neonatal rabbit brain atlas consisting of 12 multi-modal acquisitions, parcellated into 89 areas according to a hierarchical taxonomy. Delineations were performed iteratively, alternating between segmentation propagation, label fusion and manual refinements, with the aim of controlling the quality while minimizing the bias introduced by the chosen sequence. Reliability and accuracy were assessed with cross-validation and intra- and inter-operator test-retests. Multi-atlas, versioned controlled segmentations repository and supplementary materials download links are available from the software repository documentation at https://github.com/gift-surg/SPOT-A-NeonatalRabbit.


Assuntos
Animais Recém-Nascidos/anatomia & histologia , Atlas como Assunto , Encéfalo/anatomia & histologia , Coelhos/anatomia & histologia , Animais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
17.
Neuroimage ; 166: 71-78, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107121

RESUMO

As longitudinal and multi-site studies become increasingly frequent in neuroimaging, maintaining longitudinal and inter-scanner consistency of brain parcellation has become a major challenge due to variation in scanner models and/or image acquisition protocols across scanners and sites. We present a new automated segmentation method specifically designed to achieve a consistent parcellation of anatomical brain structures in such heterogeneous datasets. Our method combines a site-specific atlas creation strategy with a state-of-the-art multi-atlas anatomical label fusion framework. Site-specific atlases are computed such that they preserve image intensity characteristics of each site's scanner and acquisition protocol, while atlas pairs share anatomical labels in a way consistent with inter-scanner acquisition variations. This harmonization of atlases improves inter-study and longitudinal consistency of segmentations in the subsequent consensus labeling step. We tested this approach on a large sample of older adults from the Baltimore Longitudinal Study of Aging (BLSA) who had longitudinal scans acquired using two scanners that vary with respect to vendor and image acquisition protocol. We compared the proposed method to standard multi-atlas segmentation for both cross-sectional and longitudinal analyses. The harmonization significantly reduced scanner-related differences in the age trends of ROI volumes, improved longitudinal consistency of segmentations, and resulted in higher across-scanner intra-class correlations, particularly in the white matter.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto/normas , Neuroimagem/normas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Encéfalo/patologia , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
18.
Neuroimage ; 175: 201-214, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625235

RESUMO

Multi-atlas segmentation has been widely applied to the analysis of brain MR images. However, the state-of-the-art techniques in multi-atlas segmentation, including both patch-based and learning-based methods, are strongly dependent on the pairwise registration or exhibit huge spatial inconsistency. The paper proposes a new segmentation framework based on supervoxels to solve the existing challenges of previous methods. The supervoxel is an aggregation of voxels with similar attributes, which can be used to replace the voxel grid. By formulating the segmentation as a tissue labeling problem associated with a maximum-a-posteriori inference in Markov random field, the problem is solved via a graphical model with supervoxels being considered as the nodes. In addition, a dense labeling scheme is developed to refine the supervoxel labeling results, and the spatial consistency is incorporated in the proposed method. The proposed approach is robust to the pairwise registration errors and of high computational efficiency. Extensive experimental evaluations on three publically available brain MR datasets demonstrate the effectiveness and superior performance of the proposed approach.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Atlas como Assunto , Humanos
19.
Hum Brain Mapp ; 39(11): 4241-4257, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29972616

RESUMO

Brain extraction is an important first step in many magnetic resonance neuroimaging studies. Due to variability in brain morphology and in the appearance of the brain due to differences in scanner acquisition parameters, the development of a generally applicable brain extraction algorithm has proven challenging. Learning-based brain extraction algorithms in particular perform well when the target and training images are sufficiently similar, but often perform worse when this condition is not met. In this study, we propose a new patch-based multi-atlas segmentation method for brain extraction which is specifically developed for accurate and robust processing across datasets. Using a diverse collection of labeled images from 5 different datasets, extensive comparisons were made with 9 other commonly used brain extraction methods, both before and after applying error correction (a machine learning method for automatically correcting segmentation errors) to each method. The proposed method performed equal to or better than the other methods in each of two segmentation scenarios: a challenging inter-dataset segmentation scenario in which no dataset-specific atlases were used (mean Dice coefficient 98.57%, volumetric correlation 0.994 across datasets following error correction), and an intra-dataset segmentation scenario in which only dataset-specific atlases were used (mean Dice coefficient 99.02%, volumetric correlation 0.998 across datasets following error correction). Furthermore, combined with error correction, the proposed method runs in less than one-tenth of the time required by the other top-performing methods in the challenging inter-dataset comparisons. Validation on an independent multi-centre dataset also confirmed the excellent performance of the proposed method.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Idoso , Algoritmos , Atlas como Assunto , Criança , Feminino , Humanos , Masculino , Estudos Multicêntricos como Assunto , Reconhecimento Automatizado de Padrão/métodos , Adulto Jovem
20.
Biomed Eng Online ; 17(1): 6, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357893

RESUMO

BACKGROUND: Hippocampal atrophy is a supportive feature for the diagnosis of probable Alzheimer's disease (AD). However, even for an expert neuroradiologist, tracing the hippocampus and measuring its volume is a time consuming and extremely challenging task. Accordingly, the development of reliable fully-automated segmentation algorithms is of paramount importance. MATERIALS AND METHODS: The present study evaluates (i) the precision and the robustness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment (MCI) subjects and 94 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were available. RESULTS: HUMAN provides hippocampal volumes with a 3% precision; volume measurements effectively reveal AD, with an area under the curve (AUC) AUC1 = 0.08 ± 0.02. Segmented volumes can also reveal the subtler effects present in MCI subjects, AUC2 = 0.76 ± 0.05. The algorithm is stable and reproducible over time, even for 24 month follow-up scans. CONCLUSIONS: The experimental results demonstrate HUMAN is a precise segmentation algorithm, besides hippocampal volumes, provided by HUMAN, can effectively support the diagnosis of Alzheimer's disease and become a useful tool for other neuroimaging applications.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Atrofia/complicações , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA