Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 20(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027323

RESUMO

Poly(methyl methacrylate) (PMMA) bone cements have been widely used in clinical practices. In order to enhance PMMA's imaging performance to facilitate surgical procedures, a supplementation of radiopaque agent is needed. However, PMMA bone cements are still facing problems of loosening and bacterial infection. In this study, a multifunctional coating to simultaneously encapsulate drug and prevent the infection of radiopaque agent has been developed. Barium sulfate (BaSO4), a common radiopaque agent, is used as a substrate material. We successfully fabricated porous BaSO4 microparticles, then modified with hexakis-(6-iodo-6-deoxy)-alpha-cyclodextrin (I-CD) and silver (Ag) to obtain porous BaSO4@PDA/I-CD/Ag microparticles. The porous nature and presence of PDA coating and I-CD on the surface of microparticles result in efficient loading and release of drugs such as protein. Meanwhile, the radiopacity of BaSO4@PDA/I-CD/Ag microparticles is enhanced by this multifunctional coating containing Ba, I and Ag. PMMA bone cements containing BaSO4@PDA/I-CD/Ag microparticles show 99% antibacterial rate against both Staphylococcus aureus (S. aureus) and Escherichia Coli (E. coli), yet without apparently affecting its biocompatibility. Together, this multifunctional coating possessing enhanced radiopacity, controlled drug delivery capability and exceptional antibacterial performance, may be a new way to modify radiopaque agents for bone cements.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Sulfato de Bário/química , Cimentos Ósseos/química , Polimetil Metacrilato/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
2.
Int J Biol Macromol ; 263(Pt 2): 130430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403218

RESUMO

Ecologically feasible strategies for constructing superhydrophobic surfaces offer versatile applications in waterproofing, self-cleaning, selective absorption, and corrosion protection. Herein, we prepared low-surface-energy branched-chain-enriched micronanorod (F@SiO2@MNC) by hydrolyzing silane coupling agent and modifying fluoropolymer using micro-nanocellulose extracted from waste straw (Chinese hemp). These rods were sprayed and adhered to various substrates precoated with a binder, resulting in superhydrophobic surfaces. F@SiO2@MNC addition allowed for the formation of stable spherical liquid droplets when in contact with different types of aqueous liquids. Furthermore, these surfaces demonstrated excellent self-cleaning, robustness, abrasion resistance, UV resistance, cycling stability, and other multifunctionalities. They significantly enhanced the mechanical properties of filter paper, effectively separated oil water mixtures, and improved the corrosion resistance of metals. Our proposed strategy represents a novel approach for developing multifunctional coatings assembled from micronanocellulose.


Assuntos
Cannabis , Dióxido de Silício , Corrosão , Interações Hidrofóbicas e Hidrofílicas , China
3.
Artigo em Inglês | MEDLINE | ID: mdl-38831147

RESUMO

The rapid progress in the marine industry has resulted in notable challenges related to biofouling and surface corrosion on underwater infrastructure. Conventional coating techniques prioritise individual protective properties, such as offering either antifouling or anticorrosion protection. Current progress and innovations in nanomaterials and technologies have presented novel prospects and possibilities in the domain of integrated multifunctional coatings. These coatings can provide simultaneous protection against fouling and corrosion. This review study focuses on the potential applications of various nanomaterials, such as carbon-based nanostructures, nano-metal oxides, polymers, metal-organic frameworks, and nanoclays, in developing integrated multifunctional nano-based coatings. These emerging integrated multifunctional coating technologies recently developed and are currently in the first phases of development. The potential opportunities and challenges of incorporating nanomaterial-based composites into multifunctional coatings and their future prospects are discussed. This review aims to improve the reader's understanding of the integrated multifunctional nano-material composite coating design and encourage valuable contributions to its development.

4.
Gels ; 10(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391462

RESUMO

The study explores the application of natural biocides (oregano essential oil and eugenol, directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria (Leptolyngbya sp.) as common pioneer biodeteriogens. Core-shell nanocontainers were built for a controlled release of microbicidal agents, a safe application of chemicals and a prolonged efficacy. The qualitative and quantitative evaluations of biocide efficiency at different doses were periodically performed in vitro, after six scheduled intervals of time (until 100 days). The release kinetics of composite biocide-embedding silica nanocapsules were characterized by the UV-Vis spectroscopy technique. Data showed both promising potential and some limitations. The comparative tests of different biocidal systems shed light on their variable efficacy against microorganisms, highlighting how encapsulation influences the release dynamics and the overall effectiveness. Both the essential oils showed a potential efficacy in protective antifouling coatings for stone artifacts. Ensuring compatibility with materials, understanding their differences in biocidal activity and their release rates becomes essential in tailoring gel, microemulsion or coating products for direct on-site application.

5.
Mater Today Bio ; 23: 100848, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033370

RESUMO

Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.

6.
Chem Asian J ; 18(6): e202201233, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719256

RESUMO

Thermally expandable microspheres (TEMs) are hollow polymeric particles in which a blowing gas has been encapsulated. This property makes them excellent for thermal insulation applications, such as lightweight fillers. This study has developed a viable technology for further improving thermal insulation properties in the field that needs excellent thermal insulation of textile fabrics. The ATO/TEMs composites were designed and prepared to reduce sunlight radiation by the charge gravity method. The test results showed that the ATO-coated TEMs effectively block thermal radiation from sunlight. The temperature difference between ATO/TEMs treated cotton and the uncoated cotton fabric was 9 °C, and the thermal conductivity coatings were 0.0432 W/m⋅K. The UPF value of ATO/TEMs (ILs) coated cotton fabric is 440, significantly higher than pure cotton. This approach can provide insight into the design of high-performance solar insulation composite structures.

7.
ACS Appl Mater Interfaces ; 15(23): 28465-28475, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256318

RESUMO

Conductive composite coatings are an important element in flexible electronics research and are widely used in energy transformation, artificial intelligence, and electronic skins. However, the comparatively low electrical conductivity limits their performance in many specific applications, such as electromagnetic interference (EMI) shielding and Joule heating devices. Therefore, the preparation of ultrahigh-electrical conductivity composite coatings with good flexibility and durability remains a great challenge. Herein, we fabricated multifunctional conductive composite coatings based on thiolated chitosan (TCS) and Ag nanoparticles (AgNPs) by an eco-friendly drop-coating method. The three-dimensional conductive network constructed by thermal sintering imparted the coating with an ultrahigh electrical conductivity of up to 67079.4 S/m. Moreover, the coating reinforced by Ag-S covalent bonding exhibits good stability, including heat resistance, chemical resistance, and mechanical stability. In addition, based on the ultrahigh electrical conductivity, the coating exhibits superior EMI shielding effectiveness and Joule heating capability. With 30 wt % of AgNPs in the coating, the EMI shielding effectiveness of the coating reaches 70.2 dB, far exceeding commercial standards. Additionally, the coating can quickly reach a saturation temperature (Ts) of 195.9 °C at a safe drive voltage of 3 V. These excellent performances demonstrate that the robust and flexible highly conductive composite coatings prepared by this method have attractive potential for EMI shielding and thermal management applications as well as in wearable electronics.

8.
Colloids Surf B Biointerfaces ; 211: 112296, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35030389

RESUMO

Incomplete removal of tumor cells and insufficient osseointegration are the main causes of bone tumor recurrence and implantation failure. In the present study, a multifunctional titanium-based bioactive implant for near-infrared-triggered synergy therapy to overcome these hurdles is engineered, composed of titanium dioxide (TiO2) nanoparticles doped with fluorine (F)/dopamine (PDA)/collagen. The TiO2 nanoparticles designed in this work can simultaneously exhibit excellent near-infrared-activated photothermal and photocatalytic properties. Besides, the layer designed in this work show excellent anti-tumor activity under irradiation with 808 nm light due to the synergetic effect of hyperthermia and reactive oxygen species (ROS), and Saos-2 cells can be eradicated within 10 min. Moreover, modification of PDA and collagen endue the Ti alloy excellent osteogenic activity.


Assuntos
Hipertermia Induzida , Osteossarcoma , Diferenciação Celular , Humanos , Osteogênese , Osteossarcoma/terapia , Próteses e Implantes , Titânio/farmacologia
9.
Food Chem ; 374: 131619, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34810018

RESUMO

This study aimed to reveal the effects of vacuum-impregnated carboxymethyl chitosan (CMCS) coating with pomegranate peel extract (PPE) on quality retention of fish flesh during refrigeration. Herein, CMCS-PPE coating was effective in attenuating quality loss of grass carp fillets. Compared to Control, the levels of drip loss, total volatile base nitrogen, and K value in coated samples were sharply decreased (p < 0.05) by 24.5%, 35.3% and 25.2% on day 9, respectively. Meanwhile, the coating also helped inhibit oxidation, bioamine accumulation, and texture softening in fillets. Moreover, the microbial enumeration was reduced by >1.4 lg cfu/g as compared to Control on day 6 afterward, and high throughput sequencing analysis further showed the active coating contributed to the notable growth suppression of spoilage bacteria like Shewanella. Additionally, the positive effect of the coating scheme was also verified in longsnout catfish and snakehead, further confirming its good applicability for fish flesh preservation.


Assuntos
Quitosana , Conservação de Alimentos , Extratos Vegetais , Punica granatum , Animais , Armazenamento de Alimentos , Frutas , Extratos Vegetais/química , Punica granatum/química , Água
10.
Bioact Mater ; 6(7): 1853-1866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336116

RESUMO

Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles. However, ordinary antimicrobial treatments usually failed to combat multiple waves of infections during arthroplasty and prosthesis revisions etc. As these incidents could easily introduce new microbial pathogens in/onto the implants. Herein, we demonstrate that an antimicrobial trilogy strategy incorporating a sophisticated multilayered coating system leveraging multiple ion exchange mechanisms and fine nanotopography tuning, could effectively eradicate bacterial infection at various stages of implantation. Early stage bacteriostatic effect was realized via nano-topological structure of top mineral coating. Antibacterial effect at intermediate stage was mediated by sustained release of zinc ions from doped CaP coating. Strong antibacterial potency was validated at 4 weeks post implantation via an implanted model in vivo. Finally, the underlying zinc titanate fiber network enabled a long-term contact and release effect of residual zinc, which maintained a strong antibacterial ability against both Staphylococcus aureus and Escherichia coli even after the removal of top layer coating. Moreover, sustained release of Sr2+ and Zn2+ during CaP coating degradation substantially promoted implant osseointegration even under an infectious environment by showing more peri-implant new bone formation and substantially improved bone-implant bonding strength.

11.
ACS Appl Mater Interfaces ; 12(10): 12093-12100, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32057229

RESUMO

Multifunctional nanocoatings have been of central importance in various technological fields, yet their fabrication, especially on flexible substrates, still remains a persistent challenge to date. We herein demonstrate a mild single-step drop-and-dry approach to the in situ growth of hierarchical grass-like nanostructures on flexible cotton fabrics. A precursor solution comprising titanium-oxo clusters [Ti18MnO30(OEt)20(MnPhen)3] (Phen = 1,10-phenanthroline) and AgNO3 is employed wherein Ag+ cations are in situ-reduced to silver nanoparticles (AgNPs). Drop-casting onto cotton fabrics under mild conditions induces the in situ growth of the heterogeneous grass-like assembly, and each constituent nanofibrous 'grass leaf' incorporates AgNPs both on the surface and embedded in the interior. The hierarchical morphology and heterogeneous composition of these grass-like nanostructures impart the coated cotton fabrics with enhanced antibacterial properties, robust hydrophobicity, and UV-blocking capability, which are features desired in textile materials but lacking in natural cotton.

12.
J Clin Med ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245053

RESUMO

(1) One strategy to improve the outcome of orthopedic implants is to use porous implants with the addition of a coating with an antibacterial biomolecule. In this study, we aimed to produce and test the biocompatibility, the osteopromotive (both under normal conditions and under a bacterial challenge with lipopolysaccharide (LPS)) and antibacterial activities of a porous Ti-6Al-4V implant coated with the flavonoid quercitrin in vitro. (2) Porous Ti-6Al-4V implants were produced by 3D printing and further functionalized with quercitrin by wet chemistry. Implants were characterized in terms of porosity and mechanical testing, and the coating with quercitrin by fluorescence staining. Implant biocompatibility and bioactivity was tested using MC3T3-E1 preosteoblasts by analyzing cytotoxicity, cell adhesion, osteocalcin production, and alkaline phosphatase (ALP) activity under control and under bacterial challenging conditions using lipopolysaccharide (LPS). Finally, the antibacterial properties of the implants were studied using Staphylococcus epidermidis by measuring bacterial viability and adhesion. (3) Porous implants showed pore size of about 500 µm and a porosity of 52%. The coating was homogeneous over all the 3D surface and did not alter the mechanical properties of the Young modulus. Quercitrin-coated implants showed higher biocompatibility, cell adhesion, and osteocalcin production compared with control implants. Moreover, higher ALP activity was observed for the quercitrin group under both normal and bacterial challenging conditions. Finally, S. epidermidis live/dead ratio and adhesion after 4 h of incubation was lower on quercitrin implants compared with the control. (4) Quercitrin-functionalized porous Ti-6Al-4V implants present a great potential as an orthopedic porous implant that decreases bacterial adhesion and viability while promoting bone cell growth and differentiation.

13.
ACS Appl Mater Interfaces ; 11(28): 24999-25007, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31241302

RESUMO

Orthopedic and dental implants are associated with a substantial risk of failure due to biomaterial-associated infections and poor osseointegration. To prevent such outcomes, a coating can be applied on the implant to ideally both reduce the risk of bacterial adhesion and support establishment of osteoblasts. We present a strategy to construct dual-functional silk coatings with such properties. Silk coatings were made from a recombinant partial spider silk protein either alone (silkwt) or fused with a cell-binding motif derived from fibronectin (FN-silk). The biofilm-dispersal enzyme Dispersin B (DspB) and two peptidoglycan degrading endolysins, PlySs2 and SAL-1, were produced recombinantly. A sortase recognition tag (SrtTag) was included to allow site-specific conjugation of each enzyme onto silkwt and FN-silk coatings using an engineered variant of the transpeptidase Sortase A (SrtA*). To evaluate bacterial adhesion on the samples, Staphylococcus aureus was incubated on the coatings and subsequently subjected to live/dead staining. Fluorescence microscopy revealed a reduced number of bacteria on all silk coatings containing enzymes. Moreover, the bacteria were mobile to a higher degree, indicating a negative influence on the bacterial adhesion. The capability to support mammalian cell interactions was assessed by cultivation of the osteosarcoma cell line U-2 OS on dual-functional surfaces, prepared by conjugating the enzymes onto FN-silk coatings. U-2 OS cells could adhere to silk coatings with enzymes and showed high spreading and viability, demonstrating good cell compatibility.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Osteoblastos/metabolismo , Seda/química , Staphylococcus aureus/fisiologia , Linhagem Celular Tumoral , Fibronectinas/química , Humanos , Osteoblastos/patologia
14.
Mater Sci Eng C Mater Biol Appl ; 102: 415-426, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147012

RESUMO

Ti and titanium alloy have been extensively utilized in the areas of orthopedics and other related fields, however, limited abilities in antibiosis, ossification and vascularization restrict the application of these materials in clinical. In this research, pulse electrochemical deposition was used as a method to make chitosan regulate Ag+ and Ca2+ in situ, achieving ions' dual regulations and coprecipitation of HA nanoparticles (HA-NPs) and Ag nanoparticles (Ag-NPs) on the surface of Ti. The spherical nanoparticles with even distribution were fabricated by optimizing deposition potential and the concentration of Ag+. The physical stabilities of coatings were significantly improved by the chelation among CS, Ag+ and Ca2+ reducing the release rate of Ag+, Ca2+. The coatings also exhibited noticeable abilities in anti-bacteria. Bone marrow mesenchymal stem cells (BMSCs) displayed adhesion, proliferation and differentiation abilities on the surface of coatings, at the same time the composite coatings revealed promising capability in inducing BMSCs differentiation to osteoblast, which is proved by the results of fluorescent dye. Similar results also can be found in investigations about vascular endothelial cells, desirable adhesion between cells and materials and proliferation are able to prove that this kind of materials has outstanding biocompatibility with VECs cells. The animal experiments indicated that the composite coatings were biocompatible with smooth muscle, myocardium and lung with slightly negative impacts on liver and kidney. According to the results of alizarin red staining, the calcified nodules were dyed red, which reveal that this material can promote bone formation. Electrochemical method was utilized in this research to successfully construct multifunctional composite coatings, such as antibiosis, osteogenesis and angiogenesis, on the surface of Ti.


Assuntos
Anti-Infecciosos Locais/farmacologia , Quitosana/química , Materiais Revestidos Biocompatíveis/farmacologia , Técnicas Eletroquímicas , Nanopartículas/química , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bactérias/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Durapatita/química , Fungos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos , Prata/farmacologia
15.
Adv Healthc Mater ; 8(11): e1900002, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985090

RESUMO

The two major causes for implant failure are postoperative infection and poor osteogenesis. Initial period of osteointegration is regulated by immunocytes and osteogenic-related cells resulting in inflammatory response and tissue healing. The healing phase can be influenced by various environmental factors and biological cascade effect. To synthetically orchestrate bone-promoting factors on biomaterial surface, built is a dual delivery system coated on a titanium surface (abbreviated as AH-Sr-AgNPs). The results show that this programmed delivery system can release Ag+ and Sr2+ in a temporal-spatial manner to clear pathogens and activate preosteoblast differentiation partially through manipulating the polarization of macrophages. Both in vitro and in vivo assays show that AH-Sr-AgNPs-modified surface renders a microenvironment adverse for bacterial survival and favorable for macrophage polarization (M2), which further promotes the differentiation of preosteoblasts. Infected New Zealand rabbit femoral metaphysis defect model is used to confirm the osteogenic property of AH-Sr-AgNPs implants through micro-CT, histological, and histomorphometric analyses. These findings demonstrate that the programmed surface with dual delivery of Sr2+ and Ag+ has the potential of achieving an enhanced osteogenic outcome through favorable immunoregulation.


Assuntos
Osso e Ossos , Materiais Revestidos Biocompatíveis , Infecções/tratamento farmacológico , Nanopartículas Metálicas/química , Prata , Estrôncio , Titânio , Animais , Osso e Ossos/metabolismo , Osso e Ossos/microbiologia , Osso e Ossos/patologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Feminino , Infecções/metabolismo , Infecções/patologia , Camundongos , Osseointegração/efeitos dos fármacos , Osteogênese , Células RAW 264.7 , Coelhos , Prata/química , Prata/farmacologia , Estrôncio/química , Estrôncio/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
16.
ACS Appl Mater Interfaces ; 9(36): 30343-30358, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28836435

RESUMO

The molecular weights (MWs) of hyaluronic acid (HA) in extracellular matrix secreted from both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) play crucial roles in the cardiovascular physiology, as HA with appropriate MW influences important pathways of cardiovascular homeostasis, inhibits VSMC synthetic phenotype change and proliferation, inhibits platelet activation and aggregation, promotes endothelial monolayer repair and functionalization, and prevents inflammation and atherosclerosis. In this study, HA samples with gradients of MW (4 × 103, 1 × 105, and 5 × 105 Da) were prepared by covalent conjugation to a copolymerized film of polydopamine and hexamethylendiamine (PDA/HD) as multifunctional coatings (PDA/HD-HA) with potential to improve the biocompatibility of cardiovascular biomaterials. The coatings immobilized with high-MW-HA (PDA/HD-HA-2: 1 × 105 Da; PDA/HD-HA-3: 5 × 105 Da) exhibited a remarkable suppression of platelet activation/aggregation and thrombosis under 15 dyn/cm2 blood flow and simultaneously suppressed the adhesion and proliferation of VSMC and the adhesion, activation, and inflammatory cytokine release of macrophages. In particular, PDA/HD-HA-2 significantly enhanced VEC adhesion, proliferation, migration, and functional factors release, as well as the captured number of endothelial progenitor cells under dynamic condition. The in vivo results indicated that the multifunctional surface (PDA/HD-HA-2) created a favorable microenvironment of endothelial monolayer formation and functionalization for promoting reendothelialization and reducing restenosis of cardiovascular biomaterials.


Assuntos
Ácido Hialurônico/química , Aminas , Materiais Biocompatíveis , Peso Molecular , Próteses e Implantes
17.
ACS Appl Mater Interfaces ; 8(49): 33963-33971, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960369

RESUMO

Here, a simple zinc oxide (ZnO) nanoparticle sizing is reported for aramid fibers that simultaneously provides interfacial reinforcement and UV absorption to develop improved fiber-reinforced composites. Through a one-step nanoparticle deposition, the modified aramid fiber showed an increase in interfacial shear strength of 18.9% with the addition of ZnO nanoparticles when tested by single-fiber pullout. The aramid fibers were then treated with a hydrolysis process common to aramid fibers to oxidize the surface and elucidate the importance of oxygen functional groups at the interface. These oxidized fibers proved to further enhance the interface between the fiber surface and nanoparticle, leading to a 33.3% increase relative to the bare fiber. Additionally, due to the absorption properties of ZnO, the retainment of mechanical properties of coated fibers was determined after exposure to an artificial UV light source. After 24 h of exposure, fibers coated with ZnO nanoparticles retained 25% more tensile strength and 21% more modulus than uncoated bare fibers. This work shows that ZnO nanoparticles may serve as a novel, yet simple, multifunctional fiber sizing with which to increase the interfacial strength of aramid fiber composites and improve the resistance to UV irradiation, enabling stronger and more-durable structural fiber composites.

18.
ACS Appl Mater Interfaces ; 8(27): 17519-28, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27294568

RESUMO

Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi's statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (<10 nm), smooth, hydrophilic coating that, compared to pristine membranes, improved filtration and significantly mitigated biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%).

19.
J Biomater Sci Polym Ed ; 26(18): 1357-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381476

RESUMO

Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification.


Assuntos
Células Endoteliais/fisiologia , Compostos de Epóxi/química , Metacrilatos/química , Oligopeptídeos/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Incrustação Biológica/prevenção & controle , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Compostos de Epóxi/síntese química , Humanos , Teste de Materiais , Metacrilatos/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Miócitos de Músculo Liso/fisiologia , Espectroscopia Fotoeletrônica , Adesividade Plaquetária , Polietilenoglicóis/síntese química , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA