Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38282456

RESUMO

While disruptions in brain maturation in the first years of life in ASD are well documented, little is known about how the brain structure and function are related in young children with ASD compared to typically developing peers. We applied a multivariate pattern analysis to examine the covariation patterns between brain morphometry and local brain spontaneous activity in 38 toddlers and preschoolers with ASD and 31 typically developing children using T1-weighted structural MRI and resting-state fMRI data acquired during natural sleep. The results revealed significantly reduced brain structure-function correlations in ASD. The resultant brain structure and function composite indices were associated with age among typically developing children, but not among those with ASD, suggesting mistiming of typical brain maturational trajectories early in life in autism. Additionally, the brain function composite indices were associated with the overall developmental and adaptive behavior skills in the ASD group, highlighting the neurodevelopmental significance of early local brain activity in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Pré-Escolar , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Hum Brain Mapp ; 45(13): e70017, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39230055

RESUMO

Atypical social impairments (i.e., impaired social cognition and social communication) are vital manifestations of autism spectrum disorder (ASD) patients, and the incidence rate of ASD is significantly higher in males than in females. Characterizing the atypical brain patterns underlying social deficits of ASD is significant for understanding the pathogenesis. However, there are no robust imaging biomarkers that are specific to ASD, which may be due to neurobiological complexity and limitations of single-modality research. To describe the multimodal brain patterns related to social deficits in ASD, we highlighted the potential functional role of white matter (WM) and incorporated WM functional activity and gray matter structure into multimodal fusion. Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuations of WM (WM-fALFF) were combined by fusion analysis model adopting the social behavior. Our results revealed multimodal spatial patterns associated with Social Responsiveness Scale multiple scores in ASD. Specifically, GMV exhibited a consistent brain pattern, in which salience network and limbic system were commonly identified associated with all multiple social impairments. More divergent brain patterns in WM-fALFF were explored, suggesting that WM functional activity is more sensitive to ASD's complex social impairments. Moreover, brain regions related to social impairment may be potentially interconnected across modalities. Cross-site validation established the repeatability of our results. Our research findings contribute to understanding the neural mechanisms underlying social disorders in ASD and affirm the feasibility of identifying biomarkers from functional activity in WM.


Assuntos
Transtorno do Espectro Autista , Substância Cinzenta , Imageamento por Ressonância Magnética , Imagem Multimodal , Substância Branca , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Adulto Jovem , Adulto , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Comportamento Social , Criança , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia
3.
Psychol Med ; 54(4): 710-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37642202

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS: Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS: LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS: We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Neuroimagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Comportamento Compulsivo/diagnóstico por imagem , Encéfalo
4.
Psychol Med ; 54(5): 1045-1056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37750294

RESUMO

BACKGROUND: Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS: In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS: Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS: The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.


Assuntos
Núcleo Accumbens , Substância Branca , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Masculino , Núcleo Accumbens/diagnóstico por imagem , Depressão/diagnóstico por imagem , Estudos Transversais , Córtex Cerebral , Imageamento por Ressonância Magnética
5.
Cereb Cortex ; 33(5): 1566-1580, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35552620

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain. METHODS: To study brain substrates underlying cognitive imbalance in ASD, we capitalized categorical and dimensional IQ profiling as well as multimodal neuroimaging. RESULTS: IQ analyses revealed a marked verbal to nonverbal IQ imbalance in ASD across 2 datasets (Dataset-1: 155 ASD, 151 controls; Dataset-2: 270 ASD, 490 controls). Neuroimaging analysis in Dataset-1 revealed a structure-function substrate of cognitive imbalance, characterized by atypical cortical thickening and altered functional integration of language networks alongside sensory and higher cognitive areas. CONCLUSION: Although verbal and nonverbal intelligence have been considered as specifiers unrelated to autism diagnosis, our results indicate that intelligence disparities are accentuated in ASD and reflected by a consistent structure-function substrate affecting multiple brain networks. Our findings motivate the incorporation of cognitive imbalances in future autism research, which may help to parse the phenotypic heterogeneity and inform intervention-oriented subtyping in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/complicações , Encéfalo , Inteligência , Cognição
6.
Psychol Med ; 53(4): 1244-1253, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010224

RESUMO

BACKGROUND: Impaired self-awareness of cognitive deficits (ISAcog) has rarely been investigated in Parkinson's disease (PD). ISAcog is associated with poorer long-term outcome in other diseases. This study examines ISAcog in PD with and without mild cognitive impairment (PD-MCI), compared to healthy controls, and its clinical-behavioral and neuroimaging correlates. METHODS: We examined 63 PD patients and 30 age- and education-matched healthy controls. Cognitive state was examined following the Movement Disorder Society Level II criteria. ISAcog was determined by subtracting z-scores (based on controls' scores) of objective tests and subjective questionnaires. Neural correlates were assessed by structural magnetic resonance imaging (MRI) and 2-[fluorine-18]fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET) in 47 patients (43 with MRI) and 11 controls. We analyzed whole-brain glucose metabolism and cortical thickness in regions where FDG-uptake correlated with ISAcog. RESULTS: PD-MCI patients (N = 23) showed significantly more ISAcog than controls and patients without MCI (N = 40). When all patients who underwent FDG-PET were examined, metabolism in the bilateral superior medial frontal gyrus, anterior and midcingulate cortex negatively correlated with ISAcog (FWE-corrected p < 0.001). In PD-MCI, ISAcog was related to decreased metabolism in the right superior temporal lobe and insula (N = 13; FWE-corrected p = 0.023) as well as the midcingulate cortex (FWE-corrected p = 0.002). Cortical thickness was not associated with ISAcog in these regions. No significant correlations were found between ISAcog and glucose metabolism in controls and patients without MCI. CONCLUSIONS: Similar to Alzheimer's disease, the cingulate cortex seems to be relevant in ISAcog in PD. In PD-MCI patients, ISAcog might result from a disrupted network that regulates awareness of cognition and error processes.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Giro do Cíngulo/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Tomografia Computadorizada por Raios X , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Cognição/fisiologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Glucose
7.
Brain ; 145(5): 1785-1804, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605898

RESUMO

Alzheimer's disease involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. As important signalling molecules and mediators of many neurobiological interactions, neurotransmitter receptors are promising candidates for identifying molecular mechanisms and drug targets in Alzheimer's disease. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in vivo neuroimaging modalities (tau, amyloid-ß and glucose PET, and structural, functional and arterial spin labelling MRI) in a personalized, generative, whole-brain formulation. In a heterogeneous aged population (n = 423, ADNI data), models with personalized receptor-neuroimaging interactions showed a significant improvement over neuroimaging-only models, explaining about 70% (±20%) of the variance in longitudinal changes to the six neuroimaging modalities. In Alzheimer's disease patients (n = 25, ADNI data), receptor-imaging interactions explained up to 39.7% (P < 0.003, family-wise error-rate-corrected) of inter-individual variability in cognitive deterioration, via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in Alzheimer's disease, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our Alzheimer's disease cohort (n = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multimodal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.


Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de Neurotransmissores , Proteínas tau/metabolismo
8.
Cereb Cortex ; 32(22): 5036-5049, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35094075

RESUMO

Brain-age prediction has emerged as a novel approach for studying brain development. However, brain regions change in different ways and at different rates. Unitary brain-age indices represent developmental status averaged across the whole brain and therefore do not capture the divergent developmental trajectories of various brain structures. This staggered developmental unfolding, determined by genetics and postnatal experience, is implicated in the progression of psychiatric and neurological disorders. We propose a multidimensional brain-age index (MBAI) that provides regional age predictions. Using a database of 556 individuals, we identified clusters of imaging features with distinct developmental trajectories and built machine learning models to obtain brain-age predictions from each of the clusters. Our results show that the MBAI provides a flexible analysis of region-specific brain-age changes that are invisible to unidimensional brain-age. Importantly, brain-ages computed from region-specific feature clusters contain complementary information and demonstrate differential ability to distinguish disorder groups (e.g., depression and oppositional defiant disorder) from healthy controls. In summary, we show that MBAI is sensitive to alterations in brain structures and captures distinct regional change patterns that may serve as biomarkers that contribute to our understanding of healthy and pathological brain development and the characterization and diagnosis of psychiatric disorders.


Assuntos
Imageamento por Ressonância Magnética , Transtornos Mentais , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/patologia , Aprendizado de Máquina
9.
Cereb Cortex ; 32(15): 3187-3205, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34864941

RESUMO

Discrimination and integration of motion direction requires the interplay of multiple brain areas. Theoretical accounts of perception suggest that stimulus-related (i.e., exogenous) and decision-related (i.e., endogenous) factors affect distributed neuronal processing at different levels of the visual hierarchy. To test these predictions, we measured brain activity of healthy participants during a motion discrimination task, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We independently modeled the impact of exogenous factors (task demand) and endogenous factors (perceptual decision-making) on the activity of the motion discrimination network and applied Dynamic Causal Modeling (DCM) to both modalities. DCM for event-related potentials (DCM-ERP) revealed that task demand impacted the reciprocal connections between the primary visual cortex (V1) and medial temporal areas (V5). With practice, higher visual areas were increasingly involved, as revealed by DCM-fMRI. Perceptual decision-making modulated higher levels (e.g., V5-to-Frontal Eye Fields, FEF), in a manner predictive of performance. Our data suggest that lower levels of the visual network support early, feature-based selection of responses, especially when learning strategies have not been implemented. In contrast, perceptual decision-making operates at higher levels of the visual hierarchy by integrating sensory information with the internal state of the subject.


Assuntos
Mapeamento Encefálico , Percepção de Movimento , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética/métodos , Percepção de Movimento/fisiologia , Estimulação Luminosa
10.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834094

RESUMO

Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.


Assuntos
Esclerose Lateral Amiotrófica , Transtornos Cognitivos , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Encéfalo/patologia , Transtornos Cognitivos/patologia , Disfunção Cognitiva/patologia , Doenças Neurodegenerativas/patologia , Doença de Pick/patologia
11.
Neuroimage ; 259: 119420, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777634

RESUMO

Multimodal neuroimaging plays an important role in neuroscience research. Integrated noninvasive neuroimaging modalities, such as magnetoencephalography (MEG), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), allow neural activity and related physiological processes in the brain to be precisely and comprehensively depicted, providing an effective and advanced platform to study brain function. Noncryogenic optically pumped magnetometer (OPM) MEG has high signal power due to its on-scalp sensor layout and enables more flexible configurations than traditional commercial superconducting MEG. Here, we integrate OPM-MEG with EEG and fNIRS to develop a multimodal neuroimaging system that can simultaneously measure brain electrophysiology and hemodynamics. We conducted a series of experiments to demonstrate the feasibility and robustness of our MEG-EEG-fNIRS acquisition system. The complementary neural and physiological signals simultaneously collected by our multimodal imaging system provide opportunities for a wide range of potential applications in neurovascular coupling, wearable neuroimaging, hyperscanning and brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Magnetoencefalografia/métodos , Neuroimagem
12.
Neuroimage ; 264: 119720, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332366

RESUMO

Resting-state functional magnetic resonance imaging (rsfMRI) allows the study of functional brain connectivity based on spatially structured variations in neuronal activity. Proper evaluation of connectivity requires removal of non-neural contributions to the fMRI signal, in particular hemodynamic changes associated with autonomic variability. Regression analysis based on autonomic indicator signals has been used for this purpose, but may be inadequate if neuronal and autonomic activities covary. To investigate this potential co-variation, we performed rsfMRI experiments while concurrently acquiring electroencephalography (EEG) and autonomic indicator signals, including heart rate, respiratory depth, and peripheral vascular tone. We identified a recurrent and systematic spatiotemporal pattern of fMRI (named as fMRI cascade), which features brief signal reductions in salience and default-mode networks and the thalamus, followed by a biphasic global change with a sensory-motor dominance. This fMRI cascade, which was mostly observed during eyes-closed condition, was accompanied by large EEG and autonomic changes indicative of arousal modulations. Importantly, the removal of the fMRI cascade dynamics from rsfMRI diminished its correlations with various signals. These results suggest that the rsfMRI correlations with various physiological and neural signals are not independent but arise, at least partly, from the fMRI cascades and associated neural and physiological changes at arousal modulations.


Assuntos
Mapeamento Encefálico , Descanso , Humanos , Mapeamento Encefálico/métodos , Descanso/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
13.
Neuroimage ; 253: 119095, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304266

RESUMO

Recent functional magnetic resonance imaging (fMRI) studies revealed lower neural activation during processing of an n-back task following working memory training, indicating a training-related increase in neural efficiency. In the present study, we asked if the training induced regional neural activation is accompanied by changes in glucose consumption. An active control and an experimental group of healthy middle-aged volunteers conducted 32 sessions of visual and verbal n-back trainings over 8 weeks. We analyzed data of 52 subjects (25 experimental and 27 control group) for practice effects underlying verbal working memory task and 50 subjects (24 experimental and 26 control group) for practice effects underlying visual WM task. The samples of these two tasks were nearly identical (data of 47 subjects were available for both verbal and visual tasks). Both groups completed neuroimaging sessions at a hybrid PET/MR system before and after training. Each session included criterion task fMRI and resting state positron emission tomography with FDG (FDG-PET). As reported previously, lower neural activation following n-back training was found in regions of the fronto-parieto-cerebellar circuitry during a verbal n-back task. Notably, these changes co-occurred spatially with a higher relative FDG-uptake. Decreased neural activation within regions of the fronto-parietal network during visual n-back task did not show co-occurring changes in relative FDG-uptake. There was no direct association between neuroimaging and behavioral measures, which could be due to the inter-subjects' variability in reaching capacity limits. Our findings provide new details for working memory training induced neural efficiency on a molecular level by integrating FDG-PET and fMRI measures.


Assuntos
Fluordesoxiglucose F18 , Memória de Curto Prazo , Encéfalo/fisiologia , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
14.
Int J Neuropsychopharmacol ; 25(12): 1003-1013, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948274

RESUMO

BACKGROUND: Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy. METHODS: We here explored the potential of pregenual anterior cingulate cortex (pgACC) activity to predict antidepressant effects of ketamine in relation to ketamine-induced changes in glutamatergic metabolism. Prior to a single i.v. infusion of ketamine, 24 patients with MDD underwent functional magnetic resonance imaging during an emotional picture-viewing task and magnetic resonance spectroscopy. Changes in depressive symptoms were evaluated using the Beck Depression Inventory measured 24 hours pre- and post-intervention. A subsample of 17 patients underwent a follow-up magnetic resonance spectroscopy scan. RESULTS: Antidepressant efficacy of ketamine was predicted by pgACC activity during emotional stimulation. In addition, pgACC activity was associated with glutamate increase 24 hours after the ketamine infusion, which was in turn related to better clinical outcome. CONCLUSIONS: Our results add to the growing literature implicating a key role of the pgACC in mediating antidepressant effects and highlighting its potential as a multimodal neuroimaging biomarker of early treatment response to ketamine.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Giro do Cíngulo/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Biomarcadores/metabolismo
15.
Anal Biochem ; 636: 114343, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637785

RESUMO

Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.


Assuntos
Encéfalo , Eletroencefalografia , Hiperamonemia , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Distúrbios Congênitos do Ciclo da Ureia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , História do Século XXI , Hiperamonemia/diagnóstico por imagem , Hiperamonemia/história , Hiperamonemia/metabolismo , Hiperamonemia/fisiopatologia , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico por imagem , Distúrbios Congênitos do Ciclo da Ureia/história , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/fisiopatologia
16.
Biometrics ; 78(1): 72-84, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368210

RESUMO

Image-on-image regression analysis, using images to predict images, is a challenging task, due to (1) the high dimensionality and (2) the complex spatial dependence structures in image predictors and image outcomes. In this work, we propose a novel image-on-image regression model, by extending a spatial Bayesian latent factor model to image data, where low-dimensional latent factors are adopted to make connections between high-dimensional image outcomes and image predictors. We assign Gaussian process priors to the spatially varying regression coefficients in the model, which can well capture the complex spatial dependence among image outcomes as well as that among the image predictors. We perform simulation studies to evaluate the out-of-sample prediction performance of our method compared with linear regression and voxel-wise regression methods for different scenarios. The proposed method achieves better prediction accuracy by effectively accounting for the spatial dependence and efficiently reduces image dimensions with latent factors. We apply the proposed method to analysis of multimodal image data in the Human Connectome Project where we predict task-related contrast maps using subcortical volumetric seed maps.


Assuntos
Teorema de Bayes , Simulação por Computador , Humanos , Modelos Lineares , Distribuição Normal , Análise Espacial
17.
Cereb Cortex ; 31(3): 1444-1463, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33119049

RESUMO

The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Cognição Social , Adolescente , Criança , Feminino , Humanos , Masculino , Imagem Multimodal/métodos , Neuroimagem/métodos , Adulto Jovem
18.
Cereb Cortex ; 31(9): 3986-4005, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822908

RESUMO

The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain's functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Adulto , Animais , Nível de Alerta/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Circulação Cerebrovascular , Eletroencefalografia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Especificidade da Espécie , Adulto Jovem
19.
Cereb Cortex ; 31(3): 1732-1743, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188384

RESUMO

Age-related differences in dorsolateral prefrontal cortex (DLPFC) structure and function have each been linked to working memory. However, few studies have integrated multimodal imaging to simultaneously investigate relationships among structure, function, and cognition. We aimed to clarify how specifically DLPFC structure and function contribute to working memory in healthy older adults. In total, 138 participants aged 65-88 underwent 3 T neuroimaging and were divided into higher and lower groups based on a median split of in-scanner n-back task performance. Three a priori spherical DLPFC regions of interest (ROIs) were used to quantify blood-oxygen-level-dependent (BOLD) signal and FreeSurfer-derived surface area, cortical thickness, and white matter volume. Binary logistic regressions adjusting for age, sex, education, and scanner type revealed that greater left and right DLPFC BOLD signal predicted the probability of higher performing group membership (P values<.05). Binary logistic regressions also adjusting for total intracranial volume revealed left DLPFC surface area that significantly predicted the probability of being in the higher performing group (P = 0.017). The left DLPFC BOLD signal and surface area were not significantly associated and did not significantly interact to predict group membership (P values>.05). Importantly, this suggests BOLD signal and surface area may independently contribute to working memory performance in healthy older adults.


Assuntos
Córtex Pré-Frontal Dorsolateral/fisiologia , Memória de Curto Prazo/fisiologia , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
20.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957421

RESUMO

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS-EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS-EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS-EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS-EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS-EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS-EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS-EEG data analyses in future research.


Assuntos
Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Neuroimagem Funcional , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA