Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103641

RESUMO

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Assuntos
Proteínas de Bactérias , Quadruplex G , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , Biossíntese de Proteínas , RNA Bacteriano , RNA Mensageiro , Humanos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Inflamação/microbiologia , Ligantes , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Células THP-1 , Transcrição Gênica/efeitos dos fármacos
2.
Microb Pathog ; 193: 106757, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908454

RESUMO

The PE and PPE family proteins of Mycobacterium tuberculosis (Mtb) is exclusively found in pathogenic Mycobacterium species, comprising approximately 8-10 % of the Mtb genome. These emerging virulent factors have been observed to play pivotal roles in Mtb pathogenesis and immune evasion through various strategies. These immunogenic proteins are known to modulate the host immune response and cell-death pathways by targeting the powerhouse of the cell, the mitochondria to support Mtb survival. In this article, we are focused on how PE/PPE family proteins target host mitochondria to induce mitochondrial perturbations, modulate the levels of cellular ROS (Reactive oxygen species) and control cell death pathways. We observed that the time of expression of these proteins at different stages of infection is crucial for elucidating their impact on the cell death pathways and eventually on the outcome of infection. This article focuses on understanding the contributions of the PE/PPE proteins by unravelling the triad of host mitochondria, oxidative stress and cell death pathways that facilitate the Mtb persistence. Understanding the role of these proteins in host cellular pathways and the intricate mechanisms paves the way for the development of novel therapeutic strategies to combat TB infections.


Assuntos
Proteínas de Bactérias , Morte Celular , Interações Hospedeiro-Patógeno , Mitocôndrias , Mycobacterium tuberculosis , Espécies Reativas de Oxigênio , Humanos , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tuberculose/microbiologia , Tuberculose/metabolismo , Fatores de Virulência/metabolismo
3.
Inflamm Res ; 73(6): 897-913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625657

RESUMO

OBJECTIVES AND DESIGN: As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS: We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS: Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS: This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.


Assuntos
Fator Regulador 3 de Interferon , Interferon gama , Macrófagos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases , Proteínas , Transdução de Sinais , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Proteínas/genética , Proteínas/metabolismo , Quinase I-kappa B/metabolismo , Janus Quinases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Camundongos Knockout , Tuberculose/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Proteína Viperina
4.
BMC Infect Dis ; 24(1): 660, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956504

RESUMO

INTRODUCTION: Tuberculosis is a global health problem that causes 1. 4 million deaths every year. It has been estimated that sputum smear-negative diagnosis but culture-positive pulmonary TB diagnosis contribute to 12.6% of pulmonary TB transmission. TB diagnosis by smear microscopy smear has a minimum detection limit (LOD) of 5,000 to 10,000 bacilli per milliliter (CFU/ml) of sputum result in missed cases and false positives. However, GeneXpert technology, with a LOD of 131-250 CFU/ml in sputum samples and its implementation is believe to facilitate early detection TB and drug-resistant TB case. Since 2013, Ghana health Service (GHS) introduce GeneXpert MTB/RIF diagnostic in all regional hospitals in Ghana, however no assessment of performance between microscopy and GeneXpert TB diagnosis cross the health facilities has been reported. The study compared the results of routine diagnoses of TB by microscopy and Xpert MTB from 2016 to 2020 at the Cape Coast Teaching Hospital (CCTH). METHODS: The study compared routine microscopic and GeneXpert TB diagnosis results at the Cape Coast Teaching Hospital (CCTH) from 2016 to 2020 retrospectively. Briefly, sputum specimens were collected into 20 mL sterile screw-capped containers for each case of suspected TB infection and processed within 24 h. The samples were decontaminated using the NALC-NaOH method with the final NaOH concentration of 1%. The supernatants were discarded after the centrifuge and the remaining pellets dissolved in 1-1.5 ml of phosphate buffer saline (PBS) and used for diagnosis. A fixed smears were Ziehl-Neelsen acid-fast stain and observed under microscope and the remainings were used for GeneXpert MTB/RIF diagnosis. The data were analyze using GraphPad Prism. RESULTS: 50.11% (48.48-51.38%) were females with an odd ratio (95% CI) of 1.004 (0.944-1.069) more likely to report to the TB clinic for suspected TB diagnosis. The smear-positive cases for the first sputum were 6.6% (5.98-7.25%), and the second sputum was 6.07% (5.45-6.73%). The Xpert MTB-RIF diagnosis detected 2.93% (10/341) (1.42-5.33%) in the first and 5.44% (16/294) (3.14-8.69%) in the second smear-negative TB samples. The prevalence of Xpert MTB-RIF across smear positive showed that males had 56.87% (178/313) and 56.15% (137/244) and females had 43.13% (135/313) and 43.85% (107/244) for the first and second sputum. Also, false negative smears were 0.18% (10/5607) for smear 1 and 0.31% (16/5126) for smear 2. CONCLUSION: In conclusion, the study highlights the higher sensitivity of the GeneXpert assay compared to traditional smear microscopy for detecting MTB. The GeneXpert assay identified 10 and 16 positive MTB from smear 1 and smear 2 samples which were microscopic negative.


Assuntos
Hospitais de Ensino , Microscopia , Mycobacterium tuberculosis , Escarro , Tuberculose Pulmonar , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Escarro/microbiologia , Gana/epidemiologia , Feminino , Adulto , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Adulto Jovem , Adolescente , Sensibilidade e Especificidade , Idoso , Técnicas de Diagnóstico Molecular/métodos , Criança , Pré-Escolar
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39003248

RESUMO

Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/genética , Humanos , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Genoma Bacteriano , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno
6.
BMC Public Health ; 24(1): 1208, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693499

RESUMO

The recalcitrance of Mycobacterium tuberculosis (MTB) to eradication was related to achieving a nonreplicating (dormant) state and the increasing global burden of HIV coinfection. Consequently, understanding the knowledge and perception of the population at risk of tuberculosis-HIV infection is essential to designing a strategy of intervention embraced by the target population. A cross-sectional study was conducted among Nomads in Adamawa State, Nigeria. A multistage sampling technique was employed to recruit consented participants. Self-administered questionnaires were used to gather the required information from 4 nomadic schoolteachers in each selected school. Data were entered into a Microsoft Excel sheet where trends and tables of collated data were developed. The findings show that only 13.5% of the participants expressed the correct perceptions of the complementary relationship between HIV and TB. More people in government employment (35%) understand the coexisting relationship of TB-HIV infections. At the same time, cattle herders and crop farmers who practice the prevalent occupation lack knowledge of TB-HIV relatedness. Across gender, only a proportion of males (14.8%) than females (10.5%) were more likely to show an understanding of the complementary association of HIV and TB, and this difference showed statistical significance (p = 0.0001). In conclusion, male gender, education at a degree or professional level, and employment with the government are factors associated with positive perceptions of TB/HIV relatedness. Thus, there is a need to intensify communication to educate Nomads on HIV and TB-related issues.


Assuntos
Infecções por HIV , Conhecimentos, Atitudes e Prática em Saúde , Tuberculose , Humanos , Nigéria/epidemiologia , Masculino , Feminino , Infecções por HIV/epidemiologia , Infecções por HIV/psicologia , Estudos Transversais , Adulto , Tuberculose/epidemiologia , Tuberculose/psicologia , Pessoa de Meia-Idade , Adulto Jovem , Inquéritos e Questionários , Comorbidade , Coinfecção/epidemiologia , Adolescente
7.
BMC Public Health ; 24(1): 556, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388348

RESUMO

BACKGROUND: SARS-CoV-2 infections usually cause immune dysregulation in the human body. Studies of immunological changes resulting from coinfections with Mycobacterium tuberculosis (Mtb) or HIV are limited. METHODS: We conducted a retrospective study focusing on patients with COVID-19. A total of 550 patients infected with SARS-CoV-2 were enrolled in our study and categorized into four groups based on the presence of coinfections; 166 Delta-infected patients, among whom 103 patients had no coinfections, 52 who were coinfected with Mtb, 11 who were coinfected with HIV, and 384 Omicron-infected patients. By collecting data on epidemiologic information, laboratory findings, treatments, and clinical outcomes, we analyzed and compared clinical and immunological characteristics. RESULTS: Compared with those in the Delta group, the median white blood cell, CD4 + T-cell and B-cell counts were lower in the Mtb group and the HIV group. Except for those in the Omicron group, more than half of the patients in the three groups had abnormal chest CT findings. Among the three groups, there were no significant differences in any of the cytokines. Compared with those in the Delta group, the disease duration and LOS were longer in the Mtb group and the HIV group. For unvaccinated Delta-infected patients, in the Mtb and HIV groups, the number of B cells and CD4 + T cells was lower than that in the Delta group, with no significant difference in the LOS or disease duration. In the Mtb group, three (6%) patients presented with a disease duration greater than four months and had decreased lymphocyte and IL17A counts, possibly due to double infections in the lungs caused by SARS-CoV-2 and M. tuberculosis. CONCLUSIONS: We found that SARS-CoV-2 patients coinfected with Mtb or HIV exhibited a longer disease duration and longer LOS, with a decrease in B cells and CD4 + T cells, suggesting that these cells are related to immune function. Changes in cytokine levels suggest that coinfection with Mtb or HIV does not result in dysregulation of the immune response. Importantly, we discovered a chronic course of coinfection involving more than four months of Mtb and SARS-CoV-2 infection.


Assuntos
COVID-19 , Coinfecção , Infecções por HIV , Mycobacterium tuberculosis , Humanos , Coinfecção/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Citocinas
8.
Microb Pathog ; 176: 106021, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739922

RESUMO

Mitochondria are the powerhouse of the cell and a critical cell signalling hub that decides the fate of the cell. Mycobacterium tuberculosis (Mtb) being a successful pathogen targets and controls the host mitochondria for pathogenesis. Various effector proteins of Mtb are also known to target host mitochondria which include few proteins of a unique Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) family exclusively present in pathogenic mycobacteria, but many of them are still uncharacterized. The present study investigates one such late expressing Rv0109 (PE_PGRS1) protein of Mtb. In-silico analysis predicted the presence of mitochondria targeting signal sequences in Rv0109 and its role in regulation of cysteine type endopeptidase (caspase) activity during apoptosis. Recombinant Rv0109 gets localized to mitochondria of THP1 macrophages as shown by confocal microscopy. Rv0109 was observed to induce mitochondrial stress which resulted in mitochondrial membrane depolarization, upregulation of mitochondrial superoxides and release of Cytochrome-C in the cytoplasm through flow cytometry. Depleted intracellular ATP was observed in THP1 macrophages in response to Rv0109. This mitochondrial stress in response to Rv0109 was observed to culminate in increased expression of pro-apoptotic Bax and Bim factors and caspase activation leading to macrophage apoptosis. Since Rv0109 is a late stage specific protein expressed within granuloma; mitochondria mediated apoptosis induced by Rv0109 may be explored for its role in granuloma maintenance and pathogen persistence.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Apoptose , Caspases/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Glutamatos/metabolismo , Proteínas de Bactérias/metabolismo
9.
Inflamm Res ; 72(1): 27-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315280

RESUMO

OBJECTIVES AND DESIGN: Dendritic cells (DCs) are one of the key immune cells in bridging innate and adaptive immune response against Mycobacterium tuberculosis (Mtb) infection. Interferons (IFNs) play important roles in regulating DC activation and function. Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin) is one of the important IFN-stimulated genes (ISGs), and elicits host defense against infection. METHODS: We investigated the effects and mechanisms of Viperin on DC activation and function using Viperin deficient bone marrow-derived dendritic cells (BMDCs) during Mtb infection. RESULTS: Viperin deficiency enhanced phagocytic activity and increased clearance of Mtb in DCs, produced higher abundance of NO, cytokine including interleukin-12 (IL-12), Tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and chemokine including CXCL1, CXCL2 and CXCL10, elevated MHC I, MHC II and co-stimulatory molecules expression, and enhanced CD4+ and CD8+ T cell responses. Mechanistically, Viperin deficiency promoted DC activation and function through NF-κB p65 activation. NF-κB p65 inhibitor prevented cytokine and chemokine production, and co-stimulatory molecules expression promoted by Viperin deficiency. CONCLUSIONS: These results suggest that Mtb induced Viperin expression could impair the activation of host defense function of DCs and DC-T cell cross talk during Mtb infection. This research may provide a potential target for future HDT in TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteína Viperina , Quimiocinas/metabolismo , Citocinas , Células Dendríticas , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Proteína Viperina/metabolismo , Animais
10.
Eur J Clin Microbiol Infect Dis ; 42(8): 963-972, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256455

RESUMO

Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis (TB), is the leading cause of death due to a single infectious agent worldwide. Rapid and accurate diagnosis of MTB is critical for controlling TB especially in resource-limited countries, since any diagnosis delay increases the chances of transmission. Here, a real-time recombinase-aided amplification (RAA) assay targeting conserved positions in IS1081 gene of MTB, is successfully established to detect MTB. The intact workflow was completed within 30 min at 42 °C with no cross-reactivity observed for non-tuberculous mycobacteria and other clinical bacteria, and the detection limit for recombinant plasmid of MTB IS1081 was 163 copies/reaction at 95% probability, which was approximately 1.5-fold increase in analytical sensitivity for the detection of MTB, compared to conventional quantitative real-time PCR (qPCR; 244 copies/reaction). Furthermore, the result of clinical performance evaluation revealed an increased sensitivity of RAA assay relative to qPCR was majorly noted in the specimens with low bacteria loads. Our results demonstrate that the developed real-time RAA assay is a convenient, sensitive, and low-cost diagnostic tool for the rapid detection of MTB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Recombinases/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia
11.
BMC Infect Dis ; 23(1): 771, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940883

RESUMO

BACKGROUND: Pleural effusion (PE) is a common clinical feature that presents a diagnostic challenge for clinicians. In this retrospective study, we aimed to assess the biomarkers, ratios, and multiple indicators in serum and Pleural effusion for the differential diagnosis of tuberculous pleural effusion (TPE) from non-tuberculosis effusion (non-TPE). METHODS: The participants, who were divided into two groups: TPE and non-TPE (MPE and PPE), from Ningbo First Hospital, were incorporated in this study. The clinical and laboratory features were collected and analyzed using logistic regression analysis. Twelve biomarkers and their ratios in serum and PE were investigated for TPE versus non-TPE. Additionally, the value of multiple indicators for joint diagnosis was estimated. RESULTS: Biomarkers and ratios showed good diagnostic performance. The five variables including Serum ADA, IGRA, Effusion ADA, Effusion ADA/Serum ADA and Effusion LDH/Effusion ADA were identified as valuable parameters for differential diagnosis of TPE from non-TPE. The combined diagnosis of the five indexes yielded the highest diagnostic accuracy for TPE with an AUC (0.919), sensitivity (90.30%), and specificity (94.50%). CONCLUSIONS: The biomarkers and ratios demonstrated strong diagnostic performance, and the utilization of multiple indicators for joint diagnosis can improve the diagnostic efficacy of tuberculous pleurisy.


Assuntos
Derrame Pleural , Tuberculose Pleural , Humanos , Estudos Retrospectivos , Adenosina Desaminase/análise , Derrame Pleural/diagnóstico , Biomarcadores , Tuberculose Pleural/diagnóstico , Diagnóstico Diferencial
12.
Mar Drugs ; 21(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132937

RESUMO

The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1ß, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.


Assuntos
Gliotoxina , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Gliotoxina/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos , Fungos , Autofagia
13.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685871

RESUMO

The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.


Assuntos
Síndrome da Imunodeficiência Adquirida , COVID-19 , Coinfecção , Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações
14.
BMC Infect Dis ; 22(1): 707, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008772

RESUMO

BACKGROUND: Tuberculosis (TB) had been the leading lethal infectious disease worldwide for a long time (2014-2019) until the COVID-19 global pandemic, and it is still one of the top 10 death causes worldwide. One important reason why there are so many TB patients and death cases in the world is because of the difficulties in precise diagnosis of TB using common detection methods, especially for some smear-negative pulmonary tuberculosis (SNPT) cases. The rapid development of metabolome and machine learning offers a great opportunity for precision diagnosis of TB. However, the metabolite biomarkers for the precision diagnosis of smear-positive and smear-negative pulmonary tuberculosis (SPPT/SNPT) remain to be uncovered. In this study, we combined metabolomics and clinical indicators with machine learning to screen out newly diagnostic biomarkers for the precise identification of SPPT and SNPT patients. METHODS: Untargeted plasma metabolomic profiling was performed for 27 SPPT patients, 37 SNPT patients and controls. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was then conducted to screen differential metabolites among the three groups. Metabolite enriched pathways, random forest (RF), support vector machines (SVM) and multilayer perceptron neural network (MLP) were performed using Metaboanalyst 5.0, "caret" R package, "e1071" R package and "Tensorflow" Python package, respectively. RESULTS: Metabolomic analysis revealed significant enrichment of fatty acid and amino acid metabolites in the plasma of SPPT and SNPT patients, where SPPT samples showed a more serious dysfunction in fatty acid and amino acid metabolisms. Further RF analysis revealed four optimized diagnostic biomarker combinations including ten features (two lipid/lipid-like molecules and seven organic acids/derivatives, and one clinical indicator) for the identification of SPPT, SNPT patients and controls with high accuracy (83-93%), which were further verified by SVM and MLP. Among them, MLP displayed the best classification performance on simultaneously precise identification of the three groups (94.74%), suggesting the advantage of MLP over RF/SVM to some extent. CONCLUSIONS: Our findings reveal plasma metabolomic characteristics of SPPT and SNPT patients, provide some novel promising diagnostic markers for precision diagnosis of various types of TB, and show the potential of machine learning in screening out biomarkers from big data.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Aminoácidos , Biomarcadores , COVID-19/diagnóstico , Teste para COVID-19 , Ácidos Graxos , Humanos , Lipídeos , Aprendizado de Máquina , Metaboloma , Tuberculose Pulmonar/diagnóstico
15.
Mol Divers ; 26(2): 1227-1242, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34347229

RESUMO

The dormant or latent form of Mycobacterium tuberculosis (MTB) is not killed by the conventional antitubercular drugs. The treatment of latent TB is essential to reduce the period of treatment as well as incidences of drug resistance. In this background, we have made an attempt to develop the quantitative structure-activity relationship models (QSAR: regression and classification based) against the dormant form of MTB and later used the developed classifier models (linear discriminant analysis (LDA) and random forest (RF)) for the two-fold classifications. The logic of applying this concept of two-fold classification for the MTB modeling is to increase the confidence of correct classification. The 2D-QSAR modeling suggested the contribution of burden eigen, edge adjacency, van der Waals (vdW) surface area, topological charge, and pharmacophoric indices in predicting the antitubercular activity against the dormant MTB. The prediction qualities of the training and test sets were found to be moderate and good, according to the mean absolute error (MAE)-based criteria's. The LDA and RF models unveiled the importance of burden eigen, edge adjacency, Geary autocorrelation, and drug-like indices as discriminating features to differentiate the antitubercular compounds into higher and lower active groups. The LDA model showed the classification accuracies of 85.14% and 87.10% for the training and test sets, while the RF model exhibited the accuracies of 100.00% and 80.65% for both the sets. The descriptors selected in the final models are only two-dimensional (2D), which are easy to compute and does not require computationally expensive steps of structure conversion, optimization, and energy minimization mandatorily needed before the computation of 3D descriptors. These models could be used for identifying and selection of higher active compounds against the dormant form of the MTB.


Assuntos
Mycobacterium tuberculosis , Antituberculosos/química , Antituberculosos/farmacologia , Relação Quantitativa Estrutura-Atividade , Triazóis
16.
Microb Pathog ; 156: 104911, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991642

RESUMO

BACKGROUND: Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB). Vitamin D deficiency and vitamin D receptor (VDR) gene abnormalities confer susceptibility to tuberculosis. Toll-like receptors (TLRs), such as TLR-2, are also important mediators of inflammatory response against Mycobacterium tuberculosis. We evaluated VDR, TLR-2 and TLR-4 gene polymorphisms in patients with extrapulmonary tuberculosis (EPTB). OBJECTIVES: To find out a possible association of Vitamin D receptor (VDR) (rs731236), TLR-2 (196-174 Ins > Del) and TLR-4 (Thr399Ile) gene polymorphisms with extrapulmonary tuberculosis in ethnic Kashmiri population. METHODS: A total of 100 extrapulmunary tuberculosis cases and 102 healthy controls were analyzed for Vitamin D receptor (VDR) (rs731236), TLR-2 (196-174 ins > del) and TLR-4 (Thr399Ile) gene polymorphisms using PCR-RFLP and Allele-Specific PCR methods. RESULTS: We found increased frequency of TLR-4 Thr/Ile heterozygous genotype in cases as compared with healthy controls (22% vs 5.8%). Thus acting as a risk factor for extrapulmonary tuberculosis, as was elucidated from statistical analysis [OR, 4.5; 95% CI (1.74-11.68); P < 0.001]. In case of TLR-2 (196-174 ins > del) we observed significant differences in the homozygous variant (Del/Del) genotype of cases and controls (28% in cases & 2.94% in controls). Thus, TLR-2 (Del/Del) genotype acts as a strong risk factor for extrapulmonary tuberculosis predisposition [OR, 12.2; 95% CI (3.5-42.69); P < 0.001]. We did not find any significant differences in the genotypic distribution of (VDR) (rs731236) T > C SNP between cases and controls (P > 0.05). CONCLUSION: TLR-4 (Thr/Ile) and TLR-2 (Del/Del) act as significant risk factors for extrapulmonary tuberculosis predisposition in ethnic Kashmiri population.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Tuberculose/genética
17.
BMC Infect Dis ; 21(1): 264, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726688

RESUMO

BACKGROUND: Rapid identification of pathogenic Mycobacterium species is critical for a successful treatment. However, traditional method is time-consuming and cannot discriminate isolated non-tuberculosis mycobacteria (NTM) at species level. In the retrospective study, we evaluated the clinical applicability of PCR-reverse blot hybridization assay (PCR-REBA Myco-ID) with clinical specimens for rapid detection and differentiation of mycobacterial species. METHODS: A total of 334 sputum and 362 bronchial alveolar lavage fluids (BALF) from 696 patients with mycobacterium pulmonary disease (MPD) and 210 patients with non-mycobacterium pulmonary disease used as controls were analyzed. Sputum or BALF were obtained for MGIT 960-TBc ID test and PCR-REBA Myco-ID assay. High resolution melt analysis (HRM) was used to resolve inconsistent results of MGIT 960-TBc ID test and PCR-REBA Myco-ID assay. RESULTS: A total of 334 sputum and 362 BALF specimens from 696 MPD patients (292 MTB and 404 NTM) were eventually analyzed. In total, 292 MTBC and 436 NTM isolates (mixed infection of two species in 32 specimens) across 10 Mycobacterium species were identified. The most frequently isolated NTM species were M. intracellulare (n = 236, 54.1%), followed by M. abscessus (n = 106, 24.3%), M. kansasii (n = 46, 10.6%), M. avium (n = 36, 8.3%). Twenty-two cases had M. intracellulare and M. abscessus mixed infection and ten cases had M. avium and M. abscessus mixed infection. A high level of agreement (n = 696; 94.5%) was found between MGIT 960-TBc ID and PCR-REBA Myco-ID (k = 0.845, P = 0.000). PCR-REBA Myco-ID assay had higher AUC for both MTBC and NTM than MGIT 960-TBc ID test. CONCLUSION: PCR-REBA Myco-ID has the advantages of rapid, comparatively easy to perform, relatively low cost and superior accuracy in mycobacterial species identification compared with MGIT 960-TBc ID. We recommend it into workflow of mycobacterial laboratories especially in source-limited countries.


Assuntos
Infecções por Mycobacterium/diagnóstico , Mycobacterium tuberculosis/isolamento & purificação , Micobactérias não Tuberculosas/isolamento & purificação , Hibridização de Ácido Nucleico/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Líquido da Lavagem Broncoalveolar/microbiologia , DNA Bacteriano/metabolismo , Feminino , Infecções por HIV/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/genética , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase , Curva ROC , Estudos Retrospectivos , Escarro/microbiologia , Adulto Jovem
18.
Biochem Biophys Res Commun ; 531(3): 312-319, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32800560

RESUMO

Mycobacterium tuberculosis (MTB) infection can induce cytotoxicity to the host macrophages, promoting bacterial spread. We here tested the potential effect of oltipraz, a synthetic dithiolethione, in MTB-infected human macrophages. We show that oltipraz significantly inhibited MTB-induced death and apoptosis in human macrophages. MTB-induced reactive oxygen species production, mitochondrial depolarization and programmed necrosis were attenuated by oltipraz in macrophages. Oltipraz activated Nrf2 signaling, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation, simultaneously promoting expression of Nrf2-dependent genes (HO1, NQO1 and GST) in human macrophages. Nrf2 shRNA or CRISPR/Cas9-induced Nrf2 knockout completely reversed oltipraz-induced macrophage protection against MTB infection. Furthermore, CRISPR/Cas9-mediated Keap1 knockout induced Nrf2 cascade activation and protected human macrophages from MTB. Importantly, oltipraz was unable to offer further cytoprotection against MTB in Keap1 knockout macrophages. Collectively we conclude that oltipraz activates Nrf2 signaling cascade to protect human macrophages from MTB-induced oxidative injury and cell death.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , Fator 2 Relacionado a NF-E2/metabolismo , Pirazinas/farmacologia , Transdução de Sinais , Tionas/farmacologia , Tiofenos/farmacologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Necrose , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
J Theor Comput Chem ; 19(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34211240

RESUMO

One quarter of the world's population are infected by Mycobacterium tuberculosis (Mtb), which is a leading death-causing bacterial pathogen. Recent evidence has demonstrated that two virulence factors, ESAT-6 and CFP-10, play crucial roles in Mtb's cytosolic translocation. Many efforts have been made to study the ESAT-6 and CFP-10 proteins. Some studies have shown that ESAT-6 has an essential role in rupturing phagosome. However, the mechanisms of how ESAT-6 interacts with the membrane have not yet been fully understood. Recent studies indicate that the ESAT-6 disassociates with CFP-10 upon their interaction with phagosome membrane, forming a membrane-spanning pore. Based on these observations, as well as the available structure of ESAT-6, ESAT-6 is hypothesized to form an oligomer for membrane insertion as well as rupturing. Such an ESAT-6 oligomer may play a significant role in the tuberculosis infection. Therefore, deeper understanding of the oligomerization of ESAT-6 will establish new directions for tuberculosis treatment. However, the structure of the oligomer of ESAT-6 is not known. Here, we proposed a comprehensive approach to model the complex structures of ESAT-6 oligomer inside a membrane. Several computational tools, including MD simulation, symmetrical docking, MM/PBSA, are used to obtain and characterize such a complex structure. Results from our studies lead to a well-supported hypothesis of the ESAT-6 oligomerization as well as the identification of essential residues in stabilizing the ESAT-6 oligomer which provide useful insights for future drug design targeting tuberculosis. The approach in this research can also be used to model and study other cross-membrane complex structures.

20.
J Cell Biochem ; 120(4): 5889-5896, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30378171

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). The interaction between Mtb and macrophages, which is regulated by microRNAs, determines the development of TB. However, the function of microRNA-20b-5p (miR-20b-5p) in RAW 264.7 macrophages against Mtb remains unknown. In this study, we analyzed the expression level of miR-20b-5p in macrophage responses to Mtb infection and exosomes derived from macrophages after Mtb infection. MiR-20b-5p mimics and inhibitor were, respectively, transfected to evaluate the effect of miR-20b-5p on Mtb and macrophages. In addition, the targets of miR-20b-5p were predicted by a bioinformatics analysis. The macrophages were respectively transfected with miR-20b-5p mimics and inhibitor to determine the messenger RNA expression levels of the targets by reverse transcription-polymerase chain reaction assay. The results revealed that the miR-20b-5p expression level was decreased in the infected macrophages at different times. MiR-20b-5p was shown in the exosomes released from macrophages infected with Mtb. Upregulation of the miR-20b-5p level suppressed the survival of Mtb in macrophages, while downregulation of the miR-20b-5p level enhanced the survival of Mtb in macrophages. Overexpression of miR-20b-5p decreased the cell viability and induced apoptosis in Mtb-infected macrophages, while underexpression of miR-20b-5p increased the cell vitality and attenuated apoptosis in Mtb-infected macrophages. The bioinformatics analysis revealed that Mcl-1 was a target of miR-20b-5p. MiR-20b-5p negatively regulated the expression of Mcl-1. Overall, this study is the first to demonstrate the effect of miR-20b-5p on Mtb infection and present miR-20b-5p and exosomes as the potential therapeutic targets of TB.


Assuntos
Apoptose/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Tuberculose/metabolismo , Animais , Sobrevivência Celular/genética , Regulação para Baixo/genética , Exossomos/metabolismo , Camundongos , MicroRNAs/genética , Células RAW 264.7 , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Tuberculose/microbiologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA