Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 310, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486152

RESUMO

BACKGROUND: Escherichia coli is a common fecal coliform, facultative aerobic, gram-negative bacterium. Pathogenic strains of such microbes have evolved to cause diarrhea, urinary tract infections, and septicemias. The emergence of antibiotic resistance urged the identification of an alternative strategy. The use of lytic bacteriophages against the control of pathogenic E. coli in clinics and different environmental setups (waste and drink water management) has become an alternative therapy to antibiotic therapy. Thus, this study aimed to isolate and characterize lytic bacteriophage from various sources in Addis Ababa, tested them against antimicrobial-resistant diarrheagenic E. coli strains and evaluated their therapeutic potential under in vitro conditions. METHODS: A total of 14 samples were processed against six different diarrheagenic E. coli strains. The conventional culture and plaque analysis agar overlay method was used to recover lytic bacteriophage isolates. The phage isolates were characterized to determine their lytic effect, growth characteristics, host range activity, and stability under different temperature and pH conditions. Phage isolates were identified by scanning electron microscope (SEM), and molecular techniques (PCR). RESULTS: In total, 17 phages were recovered from 84 tested plates. Of the 17 phage isolates, 11 (65%) were Myoviridae-like phages, and 6 (35%) phage isolates were Podoviridae and Siphoviridae by morphology and PCR identification. Based on the host range test, growth characteristics, and stability test 7 potent phages were selected. These phages demonstrated better growth characteristics, including short latent periods, highest burst sizes, and wider host ranges, as well as thermal stability and the ability to survive in a wide range of pH levels. CONCLUSIONS: The promising effect of the phages isolated in this study against AMR pathogenic E. coli has raised the possibility of their use in the future treatment of E. coli infections.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Siphoviridae , Humanos , Escherichia coli , Etiópia , Infecções por Escherichia coli/terapia , Antibacterianos/farmacologia
2.
Eur J Clin Microbiol Infect Dis ; 42(10): 1207-1234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608144

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a nosocomial bacterium responsible for variety of infections. Inappropriate use of antibiotics could lead to emergence of multidrug-resistant (MDR) P. aeruginosa strains. Herein, a virulent phage; vB_PaeM_PS3 was isolated and tested for its application as alternative to antibiotics for controlling P. aeruginosa infections. METHODS: Phage morphology was observed using transmission electron microscopy (TEM). The phage host range and efficiency of plating (EOP) in addition to phage stability were analyzed. One-step growth curve was performed to detect phage growth kinetics. The impact of isolated phage on planktonic cells and biofilms was assessed. The phage genome was sequenced. Finally, the therapeutic potential of vB_PaeM_PS3 was determined in vivo. RESULTS: Isolated phage has an icosahedral head and a contractile tail and was assigned to the family Myoviridae. The phage vB_PaeM_PS3 displayed a broad host range, strong bacteriolytic ability, and higher environmental stability. Isolated phage showed a short latent period and large burst size. Importantly, the phage vB_PaeM_PS3 effectively eradicated bacterial biofilms. The genome of vB_PaeM_PS3 consists of 93,922 bp of dsDNA with 49.39% G + C content. It contains 171 predicted open reading frames (ORFs) and 14 genes as tRNA. Interestingly, the phage vB_PaeM_PS3 significantly attenuated P. aeruginosa virulence in host where the survival of bacteria-infected mice was markedly enhanced following phage treatment. Moreover, the colonizing capability of P. aeruginosa was markedly impaired in phage-treated mice as compared to untreated infected mice. CONCLUSION: Based on these findings, isolated phage vB_PaeM_PS3 could be potentially considered for treating of P. aeruginosa infections.


Assuntos
Bacteriófagos , Animais , Camundongos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Hospitais
3.
J Basic Microbiol ; 63(5): 472-480, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36270976

RESUMO

This study was aimed to isolate and characterize bacteriophage against drug-resistant, shigatoxigenic Escherichia coli (STEC), one of the zoonotic, food-borne organisms associated with ruminants, mainly cattle. STEC were isolated (n = 35) from neonatal calves, dairy workers, and the surrounding environment and their antimicrobial resistance pattern was studied. Out of the 35 isolates tested, 17 isolates were found to be multidrug resistant to important antibiotics like ampicillin, amoxicillin-clavulanate, ciprofloxacin, streptomycin, and tetracycline. Bacteriophage namely Ib_pec2 was isolated against one of the STEC isolates and its morphology, genetic and proteomic characterization was done. Morphological analysis by TEM revealed bacteriophages belonging to myoviridae family. The genetic characterization of g23 gene revealed that the bacteriophage belonged to Tequatrovirus of myoviridae family. Proteomic analysis was able to identify five proteins identical to Tequatrovirus of myoviridae family. One-step growth curve experiment revealed a latency period of 40 min and a burst size of 893 pfu/bacteria. Temperature and pH ranging from 40°C to 50°C, pH 6-8, respectively. Phage could able to lyse majority of the STEC isolates. STEC are commensal organisms in the gastrointestinal tract of ruminants but are pathogenic in humans. Bacteriophages can be used as alternatives to antibiotics to control bacterial growth in ruminants and prevent its further spillage in the environment.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Animais , Bovinos , Escherichia coli Shiga Toxigênica/genética , Proteômica , Myoviridae , Antibacterianos , Infecções por Escherichia coli/microbiologia
4.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741635

RESUMO

Marine microbes, including viruses, are an essential part of the marine ecosystem, forming the base of the food web and driving biogeochemical cycles. Within this system, the composition of viral assemblages changes markedly with time, and some of these changes are repeatable through time; however, the extent to which these dynamics are reflected within versus among evolutionarily related groups of viruses is largely unexplored. To examine these dynamics, changes in the composition of two groups of ecologically important viruses and communities of their potential hosts were sampled every 2 weeks for 13 months at a coastal site in British Columbia, Canada. We sequenced two marker genes for viruses-the gene encoding the major capsid protein of T4-like phages and their relatives (gp23) and the RNA-dependent RNA polymerase (RdRp) gene of marnavirus-like RNA viruses-as well as marker genes for their bacterial and eukaryotic host communities, the genes encoding 16S rRNA and 18S rRNA. There were strong lagged correlations between viral diversity and community similarity of putative hosts, implying that the viruses influenced the composition of the host communities. The results showed that for both viral assemblages, the dominant clusters of phylogenetically related viruses shifted over time, and this was correlated with environmental changes. Viral clusters contained many ephemeral taxa and few persistent taxa, but within a viral assemblage, the ephemeral and persistent taxa were closely related, implying ecological dynamics within these clusters. Furthermore, these dynamics occurred in both the RNA and DNA viral assemblages surveyed, implying that this structure is common in natural viral assemblages.IMPORTANCE Viruses are major agents of microbial mortality in marine systems, yet little is known about changes in the composition of viral assemblages in relation to those of the microbial communities that they infect. Here, we sampled coastal seawater every 2 weeks for 1 year and used high-throughput sequencing of marker genes to follow changes in the composition of two groups of ecologically important viruses, as well as the communities of bacteria and protists that serve as their respective hosts. Different subsets of genetically related viruses dominated at different times. These results demonstrate that although the genetic composition of viral assemblages is highly dynamic temporally, for the most part the shuffling of genotypes occurs within a few clusters of phylogenetically related viruses. Thus, it appears that even in temperate coastal waters with large seasonal changes, the highly dynamic shuffling of viral genotypes occurs largely within a few subsets of related individuals.


Assuntos
Filogenia , Água do Mar/virologia , Viroma , Vírus/classificação , Colúmbia Britânica , RNA Ribossômico 16S/análise , RNA Ribossômico 18S/análise , RNA Viral/análise , Vírus/isolamento & purificação
5.
Arch Microbiol ; 203(4): 1345-1356, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386871

RESUMO

This work describes the characterization and genome annotation of Salmonella phage vB_SalM_8-19 (referred to as 8-19) isolated from sewage samples collected in a pig farm in Jilin, China. This phage was capable of infecting 60% Salmonella strains in our lab stock. The genome of phage 8-19 is composed of linear double-stranded DNA that is 52,648 bp in length with a G + C content of 46.02%; containing 74 ORFs and no tRNA genes. In October 2019, phylogenetic analyses indicated that phage 8-19 might belong to a novel cluster among the other similar phages which have not been specifically classified within some new genus in family Myoviridae. Recently, the International Committee on Taxonomy of Viruses (ICTV) defined phage 8-19 and its related phages as genus Rosemountvirus, family Myoviridae. This new genus, known as Rosemountvirus, is rarely reported in the literature.


Assuntos
Genoma Viral , Myoviridae/genética , Fagos de Salmonella/genética , Animais , Composição de Bases , China , Myoviridae/classificação , Myoviridae/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Fagos de Salmonella/classificação , Fagos de Salmonella/isolamento & purificação , Esgotos/virologia , Suínos
6.
J Appl Microbiol ; 131(2): 695-705, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33420733

RESUMO

AIMS: Aeromonas hydrophila is a zoonotic pathogen displaying resistance to multiple antibiotics. Here, we aim to develop a candidate biocontrol agent against A. hydrophila. METHODS AND RESULTS: In this study, we isolated and characterized the phage vB-AhyM-AP1 from sewage. It showed lytic activity against A. hydrophila strains. One-step growth curve revealed that the latent period lasted for 40 min. The burst size of one lytic cycle was 1413 PFU per infected cell. Temperature stability studies showed that the phage vB-AhyM-AP1 was active over temperatures ranging from 4 to 45°C for 1 h. pH stability studies indicated that the phage remained active within a pH range of 5-10 after 24 h of incubation. Stability tests in salt solutions showed that the phage was stable at salinities ranging from 0·1 to 2%. The phage also showed stabilities in organic solvents when incubated for 10 min. The Illumina Hiseq sequencing of its genome indicated that the phage vB-AhyM-AP1was a jumbo phage with a genome size of 2, 54 490 bp and GC content of 40·3%. The phylogenetic analysis of the terminase large subunit and major capsid protein indicated that the phage closely clustered with other Tevenvirinae phages. The genome encoded 455 ORFs and 22 tRNAs. The phage resulted in a reduction of 0·8 log units of viable A. hydrophila cells in biofilms grown on PVC coupons maintained in a low nutrient medium for 10 days. CONCLUSIONS: The phage showed lytic activity against planktonic and biofilm cells of A. hydrophila. Genome-based prediction showed it to be a strictly lytic phage without any virulence or antibiotic resistance genes indicating safety for environmental and clinical applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The multidrug-resistant strains of A. hydrophila pose a significant health risk to both cultured fishes and consumers leaving few options for treatment. Phage vB-AhyM-AP1 may be used as a candidate biocontrol agent against A. hydrophila strains.


Assuntos
Aeromonas hydrophila/virologia , Bacteriófagos/genética , Aeromonas hydrophila/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Biofilmes , Agentes de Controle Biológico , Genoma Viral , Genômica , Myoviridae/classificação , Fases de Leitura Aberta , Filogenia , Esgotos/virologia
7.
Microb Pathog ; 143: 104119, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169489

RESUMO

Salmonella Enteritidis (S. Enteritidis), which could cause human disease and death by consuming the contaminated food, is an important zoonotic pathogen. With the rapid increase of antibiotic resistance all over the world, bacteriophage-based bio-control has gradually attracted public attention widely. In order to find a suitable phage treating S. Enteritidis infection, four phages infecting S. Enteritidis were isolated from poultry fecal samples. Host range showed that four phages had a broad-host-range to Salmonella isolates. The morphological analysis illustrated that all of those phages were classified as the Myoviridae family. The one-step growth curve indicated that bacteriophage BPSELC-1 has a short latent period of about 10 min and a large burst size of 500 pfu/cell in comparison to the other three phages. Then phage BPSELC-1 was sequenced and conducted in vitro experiment. The genome of phage BPSELC-1 is 86,996 bp in size and has 140 putative genes containing structure proteins-encoding genes, tRNA genes and DNA replication or nucleotide metabolism genes. Importantly, no known virulence-associated, antibiotic and lysogeny-related genes were identified in the genome of BPSELC-1. In vitro experiment of phage treatment pointed out that the number of viable S. Enteritidis ATCC 13076 was reduced by 5.9×log10 at MOI of 102 after 4 h. To the best of our knowledge, the phage BPSELC-1 exhibited higher efficiency in S. Enteritidis treatment compared to previous studies. Moreover, it is promising to be used as a broad-spectrum candidate against Salmonella infections in commercial owing to its broad-host-range.


Assuntos
Fagos de Salmonella/genética , DNA Viral/genética , Microscopia Eletrônica de Transmissão , Filogenia , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/patogenicidade , Fagos de Salmonella/ultraestrutura , Salmonella enteritidis/virologia , Virulência , Sequenciamento Completo do Genoma
8.
Lett Appl Microbiol ; 71(2): 203-209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32294268

RESUMO

Bacteriophages may be formulated into semi-solid bases for therapeutic delivery. This work investigated the effects of a range of preservatives on the viability of Myoviridae and Siphoviridae bacteriophages when these were formulated into a standard semi-solid cream base. The six preservatives tested included: benzoic acid (0·1%), chlorocresol (0·1%), combination hydroxybenzoates (propyl 4-hydroxybenzoates with methyl 4-hydroxybenzoates) (0·1%), methyl 4-hydroxybenzoate (0·08%), 2-phenoxyethanol (1%) and propyl 4-hydroxybenzoate (0·02%). These were each formulated into cetomacrogol cream aqueous to generate six individual semi-solid bases into which Myoviridae and Siphoviridae bacteriophages were added and tested for stability. Optimal bacteriophage stability was seen when the preservative chlorocresol was used. Bacteriophage in the acidic benzoic acid were the least stable, resulting in complete loss of viability after 4-5 weeks. Of the bacteriophages tested, the Myoviridae KOX1 was significantly more stable than the Siphoviridae PAC1 after 91 days in formulations with each of the preservatives. Our results suggest the need for individual testing of specific bacteriophages in pharmaceutical formulations, as their efficacy when exposed to preservatives and excipients in these delivery forms may vary. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages are being increasingly investigated as alternatives to antibiotics. While bacteriophages can be formulated in diverse ways for therapeutic delivery, there has been scant work on how excipients and preservatives in these formulations affect stability of different bacteriophages. We demonstrate that the nature of preservatives in formulations will affect bacteriophage stability, and that in these formulations, viability of bacteriophage differs according to their morphology. Our work highlights the need for individual testing of specific bacteriophages in pharmaceutical formulations, as efficacy when exposed to preservatives and excipients in these delivery forms may vary.


Assuntos
Ácido Benzoico/farmacologia , Cresóis/farmacologia , Hidroxibenzoatos/farmacologia , Myoviridae/efeitos dos fármacos , Conservantes Farmacêuticos/farmacologia , Siphoviridae/efeitos dos fármacos , Myoviridae/crescimento & desenvolvimento , Parabenos/farmacologia , Terapia por Fagos/métodos , Siphoviridae/crescimento & desenvolvimento
9.
BMC Microbiol ; 19(1): 70, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940074

RESUMO

BACKGROUND: Acinetobacter baumannii is an opportunistic pathogen that causes serious nosocomial infection in intensive care units. In particular, carbapenem-resistant A. baumannii (CRAB) strains have been increasing in the past decade, and they have caused major medical problems worldwide. In this study, a novel A. baumannii lytic phage, the YMC 13/03/R2096 ABA BP (phage Βϕ-R2096), which specifically causes the lysis of CRAB strains, was characterized in detail in vitro and in silico, and the in vivo effectiveness of phage therapy was evaluated using Galleria mellonella and a mouse model of acute pneumonia. RESULTS: The A. baumannii phage Βϕ-R2096 was isolated from sewage water using CRAB clinical strains selected from patients at a university hospital in South Korea. The complete genome of the phage Βϕ-R2096, which belongs to the Myoviridae family, was analyzed. Phage Βϕ-R2096 inhibited bacterial growth in a dose-dependent manner and exhibited high bacteriolytic activity at MOI = 10. In the evaluation of its therapeutic potential against CRAB clinical isolates using two in vivo models, phage Βϕ-R2096 increased the survival rates of both G. mellonella larvae (from 0 to 50% at 24 h) and mice (from 30% with MOI = 0.1 to 100% with MOI = 10 for 12 days) in post-infection of CRAB. In particular, phage Βϕ-R2096 strongly ameliorated histologic damage to infected lungs, with bacterial clearance in the lungs observed on day 3 postinfection in the mouse acute pneumonia model. Moreover, in vivo studies revealed no mortality or serious side effects in phage-treated groups. CONCLUSION: The results of this study strongly suggest that phage Βϕ-R2096, a novel A. baumannii lytic phage, could be an alternative antibacterial agent to control CRAB infections. This study is the first report to compare in vivo evaluations (G. mellonella larvae and a mouse acute pneumonia model) of the therapeutic efficacy of a phage against CRAB infections.


Assuntos
Infecções por Acinetobacter/terapia , Acinetobacter baumannii/virologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Terapia por Fagos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Doença Aguda , Animais , Bacteriófagos , Modelos Animais de Doenças , Feminino , Larva/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mariposas , Pneumonia Bacteriana/terapia , República da Coreia
10.
Microb Pathog ; 136: 103659, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398528

RESUMO

For effective use of phages as antimicrobial agents for controlling multidrug resistant S. Pullorum, it is important to understand phage biology. A lytic S. Pullorum phage was isolated and characterized from chicken feces, and its whole genome was sequenced and analyzed. A new lytic phage-vB_SPuM_SP116 (in brief SP116)- isolated and characterized using S. Pullorum SPu-116 as its host belongs to Myoviridae A1 group. Phage SP116 had a lytic effect on 27 of 37 (72.9%) different serotypes of clinical Salmonella strains. It showed a high bactericidal activity in killing all pathogens in cultures containing 5 × 105 cfu/mL and achieved more than 6.58 and 5.97 log unit reductions in cultures containing 5 × 106 cfu/mL and 5 × 107 cfu/mL, respectively. The one-step growth curve showed that the burst size was up to 118 pfu/bacterial cell. Complete genome sequence analysis revealed a linear, double-stranded DNA genome of 87,510 bp with an average G + C content of 38.84%, including 128 predicted open reading frames (ORFs) and 22 tRNA genes. SP116 was classified as a Felix O1 virus based upon the general phage characterization and the genomic information. Regarding its high efficacy in preventing especially S. Pullorum infection and its lack of any bacterial virulence, antimicrobial resistance, and lysogenesis genes, it could be a potential alternative candidate for the treatment of S. Pullorum infections.


Assuntos
Especificidade de Hospedeiro , Myoviridae/genética , Myoviridae/ultraestrutura , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Salmonella enterica/virologia , Animais , Bacteriólise , Composição de Bases , Galinhas , Contagem de Colônia Microbiana , DNA Viral/química , DNA Viral/genética , Fezes/virologia , Genoma Viral , Viabilidade Microbiana , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fases de Leitura Aberta , Terapia por Fagos , RNA de Transferência/genética , Infecções por Salmonella/terapia , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/fisiologia , Sequenciamento Completo do Genoma
11.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122988

RESUMO

This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.


Assuntos
Arthrobacter/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Microbiologia do Solo , Bacteriófagos/ultraestrutura , Composição de Bases , Biologia Computacional , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica de Transmissão , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Proteínas da Cauda Viral/genética , Vírion/ultraestrutura
12.
Mol Genet Genomics ; 291(1): 349-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26377943

RESUMO

Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available.


Assuntos
Bacteriófagos/genética , DNA Viral/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/virologia , Proteínas Virais/genética , Composição de Bases/genética , Sequência de Bases , Genoma Viral/genética , Lisogenia/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA/métodos , Homologia de Sequência
13.
Virol J ; 13(1): 204, 2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912769

RESUMO

BACKGROUND: Soda lakes are unique environments in terms of their physical characteristics and the biology they harbour. Although well studied with respect to their microbial composition, their viral compositions have not, and consequently few bacteriophages that infect bacteria from haloalkaline environments have been described. METHODS: Bacteria were isolated from sediment samples of lakes Magadi and Shala. Three phages were isolated on two different Bacillus species and one Paracoccus species using agar overlays. The growth characteristics of each phage in its host was investigated and the genome sequences determined and analysed by comparison with known phages. RESULTS: Phage Shbh1 belongs to the family Myoviridae while Mgbh1 and Shpa belong to the Siphoviridae family. Tetranucleotide usage frequencies and G + C content suggests that Shbh1 and Mgbh1 do not regularly infect, and have therefore not evolved with, the hosts they were isolated on here. Shbh1 was shown capable of infecting two different Bacillus species from the two different lakes demonstrating its potential broad-host range. Comparative analysis of their genome sequence with known phages revealed that, although novel, Shbh1 does share substantial amino acid similarity with previously described Bacillus infecting phages (Grass, phiNIT1 and phiAGATE) and belongs to the Bastille group, while Mgbh1 and Shpa are highly novel. CONCLUSION: The addition of these phages to current databases should help with metagenome/metavirome annotation efforts. We describe a highly novel Paracoccus infecting virus (Shpa) which together with NgoΦ6 and vB_PmaS_IMEP1 is one of only three phages known to infect Paracoccus species but does not show similarity to these phages.


Assuntos
Bacillus/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Lagos/virologia , Paracoccus/virologia , África Oriental , Bacillus/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Composição de Bases , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Lagos/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/crescimento & desenvolvimento , Myoviridae/isolamento & purificação , Paracoccus/isolamento & purificação , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação
14.
Microb Ecol ; 71(2): 315-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26403721

RESUMO

An increased incidence of cyanobacterial blooms, which are largely composed of toxigenic cyanobacteria from the Microcystis genus, leads to a disruption of aquatic ecosystems worldwide. Therefore, a better understanding of the impact of environmental parameters on the development and collapse of blooms is important. The objectives of the present study were as follows: (1) to investigate the presence and identity of Microcystis-specific cyanophages capable of cyanobacterial cell lysis in a lowland dam reservoir in Central Europe; (2) to investigate Microcystis sensitivity to phage infections with regard to toxic genotypes; and (3) to identify key abiotic parameters influencing phage infections during the summer seasons between 2009 and 2013. Sequencing analysis of selected g91 gene amplification products confirmed that the identified cyanophages belonged to the family Myoviridae (95 % homology). Cyanophages and Microcystis hosts, including toxic genotypes, were positively correlated in 4 of the 5 years analyzed (r = 0.67-0.82). The average percentage of infected Microcystis cells varied between 0.1 and 32 %, and no particular sensitivity of the phages to toxigenic genotypes was recorded. The highest number of cyanophages (>10(4) gene copy number per microliter) was observed in the period preceded by the following: an increase of the water retention time, growth of the water temperature, optimum nutrient concentrations, and the predomination of Microcystis bloom.


Assuntos
Bacteriófagos/isolamento & purificação , Água Doce/microbiologia , Microcystis/crescimento & desenvolvimento , Microcystis/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sequência de Bases , Ecossistema , Eutrofização , Água Doce/química , Microcystis/genética , Dados de Sequência Molecular , Polônia , Estações do Ano , Proteínas Virais/química , Proteínas Virais/genética , Recursos Hídricos
15.
J Appl Microbiol ; 121(1): 68-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26991925

RESUMO

AIMS: The aim of this study was to characterize phenotypical properties, to analyse whole genomes of novel Acinetobacter baumannii phages infecting carbapenem-resistant Ac. baumannii (CRAB) and to evaluate their potential as antimicrobial alternatives to control Ac. baumannii in clinical settings. METHODS AND RESULTS: The Ac. baumannii phages, Βϕ-R1215 and Βϕ-R2315, were isolated from sewage samples. These phages were characterized by transmission electron microscopy, host spectrum, the thermal/pH stability test, the bacterial lysis assay and the whole genome analysis. Both phages lysed 21 of 45 CRAB hosts, and showed high stability at various pH (pH 4-10) and temperature (25-60°C), and were strongly active against host bacteria in vitro. The genomes of Βϕ-R1215 and Βϕ-R2315 are linear double-strands of DNA with 44·866 and 44·846 bp respectively. These two genomes revealed high similarity at the DNA level, but the organization and direction of open reading frames were different. CONCLUSIONS: The Ac. baumannii phages, Βϕ-R1215 and Βϕ-R2315, are novel lytic phages lysing CRAB strains which were isolated from respiratory samples of patients. SIGNIFICANCE AND IMPACT OF THE STUDY: In vitro and in silico data showed that these novel Ac. baumannii phages, Βϕ-R1215 and Βϕ-R2315, have potential as antimicrobial alternatives to control CRAB in healthcare settings.


Assuntos
Acinetobacter baumannii/virologia , Bacteriófagos/genética , Genoma Viral , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Carbapenêmicos/farmacologia , DNA Viral/química , Farmacorresistência Bacteriana , Humanos , Fases de Leitura Aberta , Análise de Sequência de DNA
16.
J Basic Microbiol ; 56(4): 432-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748732

RESUMO

A bacteriophage (VTCCBPA6) against a pathogenic strain of Aeromonas hydrophila was isolated from the sewage of an organized equine breeding farm. On the basis of TEM analysis, phage belonged to family Myoviridae. PCR amplification and sequence analysis of gp23 gene (encoding for major capsid protein) revealed phylogenetic resemblance to T4 like virus genus. Protein profiling by SDS-PAGE also indicated its resemblance to T4 like phage group. However, the comparison of its gp23 gene sequence with previously reported phages showed similarity with T4-like phages infecting Enterobacteriaceae instead of Aeromonas spp. Thus, to our knowledge, this report points toward the fact that a novel/evolved phage might exist in equine environment against A. hydrophila, which can be potentially used as a biocontrol agent.


Assuntos
Aeromonas hydrophila/virologia , Bacteriófagos/isolamento & purificação , Doenças dos Cavalos/microbiologia , Aeromonas hydrophila/patogenicidade , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Proteínas do Capsídeo/genética , DNA Viral/genética , Fazendas , Genoma Viral , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/terapia , Doenças dos Cavalos/virologia , Cavalos , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/isolamento & purificação , Esgotos/microbiologia
17.
Mol Cell Probes ; 29(3): 151-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805216

RESUMO

In this study, multi-drug resistant Escherichia coli Sw1 (E. coli Sw1) and active lytic phage EcSw was isolated from feces samples of Sus scrofa domesticus (piglet) suffering from diarrhea. Transmission electron microscopy (TEM) indicated that isolated EcSw belongs to the Myoviridae family with an icosahedral head (80 ± 4) and a long tail (180 ± 5 nm). The EcSw phage genome size was estimated to be approximately 75 Kb of double-stranded DNA (dsDNA). Phage dynamic studies show that the latent period and burst size of EcSw were approximately 20 min and 28 PFU per cell, respectively. Interestingly, the EcSw phage can tolerate a wide range of environmental conditions, such as temperature, pH and ions (Ca(2+) and Mg(2+)). Furthermore, genome sequence analysis revealed that the lytic genes of the EcSw phage are notably similar to those of enterobacteria phages. In addition, phage-antibiotic synergy has notable effects compared with the effects of phages or antibiotics alone. Inhibition of E. coli Sw1 and 0157:H7 strains showed that the limitations of host specificity and infectivity of EcSw. Even though, it has considerable potential for phage therapy for handling the problem of the emergence of multidrug resistant pathogens.


Assuntos
Terapia Biológica , Myoviridae/metabolismo , Sus scrofa/virologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/virologia , Genoma Viral , Especificidade de Hospedeiro/genética , Concentração de Íons de Hidrogênio , Metais , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Myoviridae/genética , Myoviridae/patogenicidade , Análise de Sequência de DNA , Sus scrofa/microbiologia , Temperatura
18.
Virus Genes ; 51(2): 315-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26174698

RESUMO

Phage therapy has been previously tried for treatment of diarrhoea in calves, pigs and lambs but those trials were conducted without any detailed information of used phages. Here, we report isolation of a broad-spectrum phage which showed bactericidal activity against 47.3 % of calf diarrhoeal isolates of Escherichia coli, in vitro. The isolated phage resembled the characteristics of Myoviridae family and showed ~97 % similarity with earlier reported bacteriophages of sub family-Tevenvirinae, genus-T4-like virus, based on nucleotide sequence of major head protein-gp23 gene. The phage exhibits the potential to be used as drug substitute tool against E. coli causing diarrhoea in cattle in farm environments.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Animais , Bacteriófagos/ultraestrutura , Terapia Biológica/métodos , Bovinos , Doenças dos Bovinos/prevenção & controle , DNA Viral/química , DNA Viral/genética , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Análise de Sequência de DNA , Homologia de Sequência , Proteínas não Estruturais Virais/genética , Vírion/ultraestrutura
19.
J Appl Microbiol ; 118(6): 1541-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810004

RESUMO

AIMS: Photobacterium damselae subsp. damselae is a potent histamine-producing micro-organism. The aim of this study was to isolate and characterize a bacteriophage Phda1 that infected P. damselae subsp. damselae to inhibit its growth and histamine accumulation. METHODS AND RESULTS: Phda1 was isolated from a raw oyster, and the host range, morphology and the bacteriophage genome size were analysed. Phda1 formed a clear plaque only against P. damselae subsp. damselae JCM8969 among five Gram-positive and 32 Gram-negative bacterial strains tested. Phda1 belongs to the family Myoviridae, and its genome size was estimated as 35·2-39·5 kb. According to the one-step growth curve analysis, the latent period, rise period and burst size of Phda1 were 60 min, 50 min and 19 plaque-forming units per infected cell, respectively. Divalent cations, especially Ca(2+) and Mg(2+) , strongly improved Phda1 adsorption to the host cells and its propagation. Phda1 treatment delayed the growth and histamine production of P. damselae subsp. damselae in an in vitro challenge test. CONCLUSIONS: The bacteriophage Phda1 might serve as a potential antimicrobial agent to inhibit the histamine poisoning caused by P. damselae subsp. damselae. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first description of a bacteriophage specifically infecting P. damselae subsp. damselae and its potential applications. Bacteriophage therapy could prove useful in the prevention of histamine poisoning.


Assuntos
Bacteriófagos/isolamento & purificação , Histamina/biossíntese , Myoviridae/isolamento & purificação , Photobacterium/metabolismo , Photobacterium/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Genoma Viral , Dados de Sequência Molecular , Myoviridae/classificação , Myoviridae/genética , Filogenia
20.
J Basic Microbiol ; 54(10): 1036-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24532381

RESUMO

Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Vibrio cholerae O1/virologia , Microbiologia da Água , Bacteriófagos/química , Bacteriófagos/ultraestrutura , Especificidade de Hospedeiro , Malásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA