Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 327(2): C415-C422, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912737

RESUMO

Although studies have identified characteristics of quiescent satellite cells (SCs), their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that is highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least 3 mo without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 h/doubling), have reduced Pax7 expression (threefold decrease in Pax7 fluorescence vs. quiescence), and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.NEW & NOTEWORTHY We provide a method to isolate quiescent satellite cells from skeletal muscle. These cells are highly Pax7-positive, exhibit a very slow proliferation rate, and are capable of being maintained in culture for months without a change in phenotype. The use of these cells by muscle researchers will allow for more detailed examinations of the factors affecting satellite cell quiescence/activation and provide a novel cell source for the regenerative medicine and cellular agriculture fields.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Transcrição PAX7 , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Camundongos , Diferenciação Celular/fisiologia , Células Cultivadas , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Separação Celular/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Desenvolvimento Muscular/fisiologia , Masculino
2.
Neurobiol Dis ; 200: 106642, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39173845

RESUMO

Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.


Assuntos
Estresse Psicológico , Animais , Feminino , Masculino , Camundongos , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Núcleos Talâmicos/metabolismo , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921011

RESUMO

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

4.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100064

RESUMO

The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.


Assuntos
Ventrículos do Coração/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese/fisiologia , Molécula de Adesão de Leucócito Ativado , Animais , Moléculas de Adesão Celular/metabolismo , Contactina 2/metabolismo , Expressão Gênica , Coração , Sistema de Condução Cardíaco/metabolismo , Camundongos , Camundongos Knockout , Ácidos Siálicos , Sialiltransferases
5.
Cell Commun Signal ; 22(1): 85, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291468

RESUMO

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Moléculas de Adesão de Célula Nervosa , Caderinas , Neoplasias Pulmonares/genética , Isoformas de Proteínas , Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/metabolismo , Neoplasias Pancreáticas/patologia
6.
Pediatr Dev Pathol ; : 10935266241237656, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576387

RESUMO

Recent progress in glomerular immune complex and complement-mediated diseases have refined diagnostic categories and informed mechanistic understanding of disease development in pediatric patients. Herein, we discuss selected advances in 3 categories. First, membranous nephropathy antigens are increasingly utilized to characterize disease in pediatric patients and include phospholipase A2 receptor (PLA2R), Semaphorin 3B (Sema3B), neural epidermal growth factor-like 1 (NELL1), and protocadherin FAT1, as well as the lupus membranous-associated antigens exostosin 1/2 (EXT1/2), neural cell adhesion molecule 1 (NCAM1), and transforming growth factor beta receptor 3 (TGFBR3). Second, we examine advances in techniques for paraffin and light chain immunofluorescence (IF), including the former's function as a salvage technique and their necessity for diagnosis in adolescent cases of membranous-like glomerulopathy with masked IgG kappa deposits (MGMID) and proliferative glomerulonephritis with monotypic Ig deposits (PGNMID), respectively. Finally, progress in understanding the roles of complement in pediatric glomerular disease is reviewed, with specific attention to overlapping clinical, histologic, and genetic or functional alternative complement pathway (AP) abnormalities among C3 glomerulopathy (C3G), infection-related and post-infectious GN, "atypical" post-infectious GN, immune complex mediated membranoproliferative glomerulonephritis (IC-MPGN), and atypical hemolytic uremic syndrome (aHUS).

7.
Ecotoxicol Environ Saf ; 273: 116119, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382347

RESUMO

Heavy metals are released into the environment in increasing amounts from different natural and anthropogenic sources. Among them, cadmium contaminates aquatic habitats and represents a threat to Amphibians. To assess the risks of exposure to cadmium in the aquatic environment, we studied the survival rate of early tadpoles of Xenopus laevis under exposure to CdCl2 for 6 days in the concentration range between 0.15 and 150 µM of Cd2+. Tadpoles survived and reached stage 45 before feeding at all concentrations tested except 150 µM Cd2+, which significantly induced death. With an exposure of 15 µM Cd2+, tadpoles' mean body length decreased, heart rate increased, fastest swimming speed decreased, and distance traveled was greater compared to unexposed controls. Additionally, a witness of neuronal normal development, the neural cell adhesion molecules (NCAM) expression, was decreased. Moreover, this cell-surface glycoprotein exhibited higher polysialylation, a post-translational modification capable to reduce cell adhesion properties and to affect organ development. Our study highlights the effects of Cd2+ on a series of parameters including morphology, physiology, and behavior. They emphasize the deregulation of molecular NCAM suggesting this effector is an interesting biomarker to detect cadmic toxicity in early tadpoles.

8.
Ecotoxicol Environ Saf ; 280: 116516, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820819

RESUMO

The assessment of neurotoxicity for environmental chemicals is of utmost importance in ensuring public health and environmental safety. Multielectrode array (MEA) technology has emerged as a powerful tool for assessing disturbances in the electrophysiological activity. Although human embryonic stem cell (hESC)-derived neurons have been used in MEA for neurotoxicity screening, obtaining a substantial and sufficiently active population of neurons from hESCs remains challenging. In this study, we successfully differentiated neurons from a large population of human neuronal precursor cells (hNPC) purified using a polysialylated neural cell adhesion molecule (PSA-NCAM), referred to as hNPCPSA-NCAM+. The functional characterization demonstrated that hNPCPSA-NCAM+-derived neurons improve functionality by enhancing electrophysiological activity compared to total hNPC-derived neurons. Furthermore, three-dimensional (3D) neurons derived from hNPCPSA-NCAM+ exhibited reduced maturation time and enhanced electrophysiological activity on MEA. We employed subdivided population analysis of active mean firing rate (MFR) based on electrophysiological intensity to characterize the electrophysiological properties of hNPCPSA-NCAM+-3D neurons. Based on electrophysiological activity including MFR and burst parameters, we evaluated the sensitivity of hNPCPSA-NCAM+-3D neurons on MEA to screen both inhibitory and excitatory neuroactive environmental chemicals. Intriguingly, electrophysiologically active hNPCPSA-NCAM+-3D neurons demonstrated good sensitivity to evaluate neuroactive chemicals, particularly in discriminating excitatory chemicals. Our findings highlight the effectiveness of MEA approaches using hNPCPSA-NCAM+-3D neurons in the assessment of neurotoxicity associated with environmental chemicals. Furthermore, we emphasize the importance of selecting appropriate signal intensity thresholds to enhance neurotoxicity prediction and screening of environmental chemicals.


Assuntos
Fenômenos Eletrofisiológicos , Poluentes Ambientais , Células-Tronco Neurais , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácidos Siálicos , Diferenciação Celular/efeitos dos fármacos , Molécula L1 de Adesão de Célula Nervosa , Testes de Toxicidade/métodos
9.
Environ Toxicol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581187

RESUMO

INTRODUCTION: Bladder cancer (BLCA) is a prevalent and deadly form of urinary cancer, and there is a need for effective therapies, particularly for muscle-invasive bladder cancer (MIBC). Cell cycle inhibitors show promise in restoring control of the cell cycle in BLCA cells, but their clinical prognosis evaluation is limited. METHODS: Transcriptome and scRNA-seq data were collected from the Cancer Genome Atlas Program (TCGA)-BLCA and GSE190888 cohort, respectively. R software and the Seurat package were used for data analysis, including cell quality control, dimensionality reduction, and identification of differentially expressed genes. Genes related to the cell cycle were obtained from the genecards website, and a protein-protein interaction network analysis was performed using cytoscape software. Functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular docking were conducted using various tools and packages. BLCA cell lines were cultured and transfected for in vitro experimental assays, including RT-qPCR analysis, and CCK-8 cell viability assays. RESULTS: We identified 32 genes as independent risk or protective factors for BLCA prediction. Functional enrichment analysis revealed their involvement in cell cycle regulation, apoptosis, and various signaling pathways. Using these genes, we developed a nomogram for predicting BLCA survival, which displayed high prognosis stratification efficacy in BLCA patients. Four cell cycle associated key genes identified, including NCAM1, HBB, CKD6, and CTLA4. We also identified the main cell types in BLCA patients and investigated the functional differences between epithelial cells based on their expression levels of key genes. Furthermore, we observed a high positive correlative relationship between the infiltration of cancer-associated fibroblasts and the risk score value. Finally, we conducted in vitro experiments to demonstrate the suppressive role of NCAM1 in BLCA cell proliferation. CONCLUSION: These findings suggest that cell cycle associated genes could serve as potential biomarkers for predicting BLCA prognosis and may represent therapeutic targets for the development of more effective therapies. Hopefully, these findings provide valuable insights into the molecular mechanisms and potential therapeutic targets in BLCA from the perspective of cell cycle. Moreover, NCAM1 was a novel cell proliferation suppressor in the BLCA carcinogenesis.

10.
Neurobiol Dis ; 180: 106079, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918046

RESUMO

Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Ácidos Siálicos/metabolismo , Cognição , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de N-Metil-D-Aspartato
11.
Cancer Sci ; 114(6): 2650-2663, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36846943

RESUMO

Resistance to chemotherapeutic drugs limits the efficacy of chemotherapy in non-small cell lung cancer (NSCLC). Autophagy is an essential mechanism which involves in drug resistance. Our previous research has revealed that miR-152-3p represses NSCLC progression. However, the mechanism of miR-152-3p in autophagy-mediated chemoresistance in NSCLC remains unclear. Cisplatin-resistant cell lines (A549/DDP and H446/DDP) were transfected with related vectors and subjected to cisplatin, autophagy inhibitor, activator, or extracellular signal-regulated kinase (ERK) activator. Flow cytometry, CCK8 and colony formation assays were performed for testing apoptosis and cell viability. The related RNAs or proteins were detected by qRT-PCR or Western blot. Chromatin immunoprecipitation, luciferase reporter assay or RNA immunoprecipitation were used for validating the interaction between miR-152-3p and ELF1 or NCAM1. Co-IP verified the binding between NCAM1 and ERK. The role of miR-152-3p in cisplatin resistance of NSCLC was also validated in vivo. The results showed that miR-152-3p and ELF1 were decreased in NSCLC tissues. miR-152-3p reversed cisplatin resistance by inhibiting autophagy through NCAM1. NCAM1 promoted autophagy through the ERK pathway and facilitated cisplatin resistance. ELF1 positively regulated miR-152-3p level by directly interacting with miR-152-3p promoter. miR-152-3p targeted NCAM1 to regulate NCAM1 level and then affected the binding of NCAM1 to ERK1/2. ELF1 inhibited autophagy and reversed cisplatin resistance through miR-152-3p/NCAM1. miR-152-3p inhibited autophagy and cisplatin resistance of xenograft tumor in mice. In conclusion, our study revealed that ELF1 inhibited autophagy to attenuate cisplatin resistance through the miR-152-3p/NCAM1/ERK pathway in H446/DDP and A549/DDP cells, suggesting a potential novel treatment strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno CD56 , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares , Fatores de Transcrição/genética
12.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31862845

RESUMO

The development of tissues and organs requires close interaction of cells. To achieve this, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila ortholog Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms, we have conducted a comprehensive genetic analysis of Fas2 We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated Fas2 mutants expressing only single isoforms. In contrast to the null mutation, which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type-specific rescue experiments showed that glial-secreted Fas2 can rescue the Fas2 mutant phenotype to viability. This demonstrates that cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data suggest novel mechanistic aspects of a long-studied adhesion protein.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Mutação/genética , Neuroglia/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Traqueia/embriologia , Traqueia/metabolismo
13.
Glycoconj J ; 40(3): 277-294, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171513

RESUMO

Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.


Assuntos
Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Ácidos Siálicos/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Encéfalo/metabolismo , Imunidade Inata
14.
Am J Obstet Gynecol ; 229(2): 166.e1-166.e16, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36649818

RESUMO

BACKGROUND: Perinatal mood and anxiety disorders encompass a range of mental health disorders that occur during pregnancy and up to 1 year postpartum, affecting approximately 20% of women. Traditional risk factors, such as a history of depression and pregnancy complications including preeclampsia, are known. Their predictive utility, however, is not specific or sensitive enough to inform clinical decision-making or prevention strategies for perinatal mood and anxiety disorders. Better diagnostic and prognostic models are needed for early identification and referral to treatment. OBJECTIVE: This study aimed to determine if a panel of novel third-trimester plasma protein biomarkers in pregnant women can be used to identify those who have a high predisposed risk for perinatal mood and anxiety disorders within 3 months postpartum. STUDY DESIGN: We studied 52 women (n=34 with a risk for perinatal mood and anxiety disorders and n=18 controls) among whom mental health screening was conducted at 2 time points, namely in the third trimester and again at 3 months postdelivery. An elevated perinatal mood and anxiety disorder risk was identified by screening individuals with above-validated cutoffs for depression (Edinburgh Postnatal Depression Scale ≥12), anxiety (Overall Anxiety Severity and Impairment Scale ≥7), and/or posttraumatic stress disorder (Impact of Events Scale >26) at both time points. Plasma samples collected in the third trimester were screened using the aptamer-based SomaLogic SomaScan proteomic assay technology to evaluate perinatal mood and anxiety disorder-associated changes in the expression of 1305 protein analytes. Ingenuity Pathway Analysis was conducted to highlight pathophysiological relationships between perinatal mood and anxiety disorder-specific proteins found to be significantly up- or down-regulated in all subjects with perinatal mood and anxiety disorder and in those with perinatal mood and anxiety disorders and no preeclampsia. RESULTS: From a panel of 53 significant perinatal mood and anxiety disorder-associated proteins, a unique 20-protein signature differentiated perinatal mood and anxiety disorder cases from controls in a principal component analysis (P<.05). This protein signature included NCAM1, NRCAM, and NTRK3 that converge around neuronal signaling pathways regulating axonal guidance, astrocyte differentiation, and maintenance of GABAergic neurons. Interestingly, when we restricted the analysis to subjects without preeclampsia, a 30-protein signature differentiated perinatal mood and anxiety disorder cases from all controls without overlap on the principal component analysis (P<.001). In the nonpreeclamptic perinatal mood and anxiety disorder group, we observed increased expression of proteins, such as CXCL11, CXCL6, MIC-B, and B2MG, which regulate leucocyte migration, inflammation, and immune function. CONCLUSION: Participants with perinatal mood and anxiety disorders had a unique and distinct plasma protein signature that regulated a variety of neuronal signaling and proinflammatory pathways. Additional validation studies with larger sample sizes are needed to determine whether some of these molecules can be used in conjunction with traditional risk factors for the early detection of perinatal mood and anxiety disorders.


Assuntos
Depressão Pós-Parto , Complicações na Gravidez , Feminino , Gravidez , Humanos , Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/psicologia , Depressão/diagnóstico , Proteômica , Ansiedade/complicações , Complicações na Gravidez/psicologia , Biomarcadores , Depressão Pós-Parto/diagnóstico
15.
J Biol Chem ; 296: 100372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548223

RESUMO

Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1-/- mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1ß) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1-/- mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1-/- mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Antígeno CD56/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Secretases da Proteína Precursora do Amiloide/fisiologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Encéfalo/metabolismo , Antígeno CD56/fisiologia , Moléculas de Adesão Celular/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Ácidos Siálicos/metabolismo , Análise Espaço-Temporal , Sinapses/metabolismo
16.
Cell Mol Neurobiol ; 42(4): 1167-1188, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33206286

RESUMO

Increasing evidence suggests that mesenchymal stem cells(MSCs) have beneficial effects in hypoxic ischemic reperfusion injury, but the underlying mechanisms are unclear. Here, we first examined the effect of OGD reperfusion injury on the vulnerability of human NPs derived from human embryonic stem cells (hESCs) with regard to cell survival and oxidative stress. Cellular deregulation was assessed by measuring glutathione levels, basal calcium and intracellular calcium [Ca2+]i response under KCl stimulation, as well as the key parameters of proliferation, glial progenitor marker expression and migration. Next, the influence of WJ-MSCs in recovering these parameters was evaluated, and the role of Phosphatidyl-inositol-3-Kinase(PI3K) pathway in actuating the protective effect was assessed. OGD reperfusion injury induced significant increases in cell death, ROS generation, oxidative stress susceptibility and decreased glutathione levels in NPs, accompanied by rises in basal [Ca2+]i, KCl-induced [Ca2+]i, expression of K+ leak channel(TASK1), and declines in proliferation, migration potential and glial progenitor population. The introduction of WJ-MSCs(after 2 h of reperfusion) through a non-contact method brought about significant improvement in all these cellular parameters as observed after 24hrs, and the PI3K pathway played an important role in the neuroprotection process. Presence of WJ-MSCs increased the expression of survival signals like phosphorylated Akt/Akt and PI3K in the OGD-reperfused NPs. Our data clearly demonstrate for the first time that soluble factors from WJ-MSCs can not only ameliorate survival, proliferation, migration and glial progenitor expression of OGD-reperfused NPs, but also regulate their intracellular Ca2+ response to KCl stimulation and expression of TASK1 through the PI3K pathway.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Geleia de Wharton , Humanos , Inositol/metabolismo , Inositol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismo por Reperfusão/metabolismo
17.
Eur J Neurol ; 29(4): 1155-1164, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913222

RESUMO

BACKGROUND AND PURPOSE: Guillain-Barré syndrome (GBS) is an acute inflammatory autoimmune and demyelinating disease of the peripheral nervous system. Currently, valid biomarkers are unavailable for the diagnosis of GBS. METHODS: A comparative proteomics analysis was performed on the cerebrospinal fluid (CSF) from 10 patients with GBS and 10 patients with noninflammatory neurological disease (NND) using the tandem mass tags technique. The differentially expressed proteins were analyzed by bioinformatics, and then the candidate proteins were validated by the enzyme-linked immunosorbent assay method in another cohort containing 160 samples (paired CSF and plasma of 40 patients with GBS, CSF of 40 NND patients and plasma of 40 healthy individuals). RESULTS: In all, 298 proteins were successfully identified in the CSF samples, of which 97 differentially expressed proteins were identified in the GBS and NND groups. Three key molecules were identified as candidate molecules for further validation. The CSF levels of TGOLN2 and NCAM1 decreased in GBS patients compared with NND patients, whereas the CSF levels of APOC3 increased. The enzyme-linked immunosorbent assay results were consistent with our proteomics analysis. Interestingly, in the validation cohort, serum APOC3 levels in the GBS group were consistent with those in the CSF samples and significantly higher than those in the healthy control group. CONCLUSIONS: Our preliminary data suggest that the CSF protein expression profile of patients with GBS is different from that of patients with NND. Moreover, alterations of TGOLN2, NCAM1and APOC3 may be used as novel biomarkers for identifying patients with GBS.


Assuntos
Síndrome de Guillain-Barré , Proteômica , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática , Humanos , Proteômica/métodos
18.
Neurol Sci ; 43(7): 4483-4491, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35138478

RESUMO

BACKGROUND: GNE myopathy is the most common distal myopathy in China. We summarized the clinical, genetic, and pathological characteristics of 125 Chinese patients with GNE myopathy. METHODS: We collected clinical data of 21 patients diagnosed at our hospital and 104 patients from previous reports. Clinical, genetic, and pathological characteristics were summarized. According to the location of mutations, patients were classified into groups to analyze genotype-phenotype correlation. We reviewed the pathological features and studied the expressions of neural cell adhesion molecule. RESULTS: The severity of involvement of lower limb muscles was in the following order: tibialis anterior > biceps femoris > gastrocnemius > iliopsoas > quadriceps femoris. Mutation p.D207V was the most common variant in China. Patients carrying p.D207V tended to show later disease onset. In the epimerase/epimerase group, men had earlier disease onset than women (p < 0.05). In other groups, age at disease onset in females was earlier than that in males. Protein analysis showed decreased sialylation of NCAM and upregulation of LC3 in patients with different mutations. CONCLUSIONS: Mutation p.D207V is the most common GNE variant in China. Involvement of flexor muscles in lower limbs was more obvious than extensor muscles. NCAM expression in patients with various mutations may be a useful diagnostic biomarker in GNE myopathy.


Assuntos
Miopatias Distais , Moléculas de Adesão de Célula Nervosa , Antígeno CD56 , Miopatias Distais/diagnóstico , Miopatias Distais/genética , Miopatias Distais/patologia , Feminino , Humanos , Masculino , Complexos Multienzimáticos/genética , Músculo Esquelético/patologia , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Racemases e Epimerases/genética
19.
Anim Biotechnol ; 33(1): 79-84, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33314987

RESUMO

The aim of this study was to detect the novel copy number variation (CNV) locus of NCAM2 gene in Chinese Holstein, and to analyze the effect of the novel CNV locus in NCAM2 gene on milk composition traits. The novel CNV locus of NCAM2 gene in 310 Chinese Holstein was detected by real-time quantitative fluorescent PCR (qPCR) and association analysis was performed between the novel CNV locus in NCAM2 gene and milk composition traits in Chinese Holstein. There are three CNV types of NCAM2 gene in Chinese Holstein: gain (increased copy number), median (normal copy number) and loss (deleted copy number). Statistical analysis revealed that there was a significant association between CNV types and milk fat rate (p < 0.05). Moreover, we also discovered that the milk production and milk protein rate of gain type is higher than that of loss type, but that of mediate type is lower than that of loss type. However, in terms of somatic cell score, loss type is higher than that of gain type, but that of mediate type is lower than that of gain type. These observations suggested that gain type can be used as a candidate molecular genetic marker of milk fat rate.HighlightsThe CNVs of the NCAM2 gene were detected and validated in Chinese Holstein.The type of CNV was successfully implemented using qPCR.The statistical analysis indicated that the CNV of the NCAM2 gene are significantly associated with milk fat rate.


Assuntos
Variações do Número de Cópias de DNA , Leite , Animais , China , Variações do Número de Cópias de DNA/genética , Proteínas do Leite , Fenótipo
20.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563598

RESUMO

Schizophrenia is a serious psychiatric disorder that affects the social life of patients. Psychiatric disorders are caused by a complex combination of genetic (G) and environmental (E) factors. Polysialylation represents a unique posttranslational modification of a protein, and such changes in neural cell adhesion molecules (NCAMs) have been reported in postmortem brains from patients with psychiatric disorders. To understand the G × E effect on polysialylated NCAM expression, in this study, we performed precise measurements of polySia and NCAM using a disrupted-in-schizophrenia 1 (DISC1)-mutant mouse (G), a mouse model of schizophrenia, under acute stress conditions (E). This is the first study to reveal a lower number and smaller length of polySia in the suprachiasmatic nucleus of DISC1 mutants relative to those in wild-type (WT) mice. In addition, an analysis of polySia and NCAM responses to acute stress in five brain regions (olfactory bulb, prefrontal cortex, suprachiasmatic nucleus, amygdala, and hippocampus) revealed that the pattern of changes in these responses in WT mice and DISC1 mutants differed by region. These differences could indicate the vulnerability of DISC1 mutants to stress.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Sialiltransferases , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA